时间序列预测 | Python实现ARIMA时间序列数据预测

41 篇文章 243 订阅 ¥29.90 ¥99.00
25 篇文章 226 订阅 ¥29.90 ¥99.00
本文介绍了使用Python的Statsmodels库实现ARIMA时间序列预测,涵盖AR、MA、ARMA和SARIMA模型。时间序列分析通过分解等级、趋势、季节性和噪声四个组成部分,帮助理解数据并进行预测。文章提供了模型的基本概念和应用实例。
摘要由CSDN通过智能技术生成

时间序列预测 | Python实现ARIMA时间序列数据预测

基本介绍

时间序列预测是机器学习中一个经常被忽视的重要领域。时间序列在观察之间添加了显式的顺序依赖性:时间维度。这个额外的维度既是一个约束,也是一个提供额外信息来源的结构。

  • 使用经典统计时,主要关注的是时间序列的分析。时间序列分析涉及开发能够最好地捕捉或描述观察到的时间序列的模型,以了解根本原因。该研究领域寻求时间序列数据集背后的“为什么”。
  • 在时间序列数据的经典统计处理中,对未来进行预测称为外推。更现代的领域关注该主题并将其称为时间序列预测。预测涉及采用适合历史数据的模型并使用它们来预测未来的观察结果。描述性模型可以借用未来(即平滑或去除噪声),它们只寻求最好地描述数据。预测的一个重要区别是未来是完全不可用的,只能根据已经发生的事情来估计。
  • 时间序列分析提供了一系列技术来更好地理解数据集。也许其中最有用的是将时间序列分解为 4 个组成部分:
  • 1.等级 如果系列是直线,则为该系列的基线值。
  • 2.趋势 系列随时间的可选且通常线性增加或减少的行为。
  • 3.季节性 随着时间的推移,可选的重复模式或行为循环。
  • 4.噪音 模型无法解释的观测值中的可选变异性。
  • 5.所有时间序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值