import requests
from bs4 import BeautifulSoup
import jieba
from gensim.corpora.dictionary import Dictionary
import re
import jieba.analyse as ana
def getdata():
#news_all=[]
news_dictall={}
for p in range(1,10):
p2=1603263206992+p*8
url='https://v2.sohu.com/public-api/feed?scene=CATEGORY&sceneId=1460&page='+str(p)+'&size=20&_='+str(p2)
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.75 Safari/537.36',
'cookie':'itssohu=true; BAIDU_SSP_lcr=https://news.hao123.com/wangzhi; IPLOC=CN3300; SUV=201021142102FD7T; reqtype=pc; gidinf=x099980109ee124d51195e802000a3aab2e8ca7bf7da; t=1603261548713; jv=78160d8250d5ed3e3248758eeacbc62e-kuzhE2gk1603261903982; ppinf=2|1603261904|1604471504|bG9naW5pZDowOnx1c2VyaWQ6Mjg6MTMxODgwMjEyODc2ODQzODI3MkBzb2h1LmNvbXxzZXJ2aWNldXNlOjMwOjAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMHxjcnQ6MTA6MjAyMC0xMC0yMXxlbXQ6MTowfGFwcGlkOjY6MTE2MDA1fHRydXN0OjE6MXxwYXJ0bmVyaWQ6MTowfHJlbGF0aW9uOjA6fHV1aWQ6MTY6czExZjVhZTI2NTJiNmM3Nnx1aWQ6MTY6czExZjVhZTI2NTJiNmM3Nnx1bmlxbmFtZTowOnw; pprdig=L2Psu-NwDR2a1BZITLwhlxdvI2OrHzl6jqQlF3zP4z70gqsyYxXmf5dCZGuhPFZ-XWWE5mflwnCHURGUQaB5cxxf8HKpzVIbqTJJ3_TNhPgpDMMQdFo64Cqoay43UxanOZJc4-9dcAE6GU3PIufRjmHw_LApBXLN7sOMUodmfYE; ppmdig=1603261913000000cfdc2813caf37424544d67b1ffee4770'
}
res=requests.get(url,headers=headers)
soup=BeautifulSoup(res.text,'lxml')
news=re.findall('"mobileTitle":"(.*?)",',str(soup))
herf=re.findall('"originalSource":"(.*?)"',str(soup))
#news=soup.find_all("div",attrs={'class':'news-wrapper'})
#html=etree.HTML(res.text)
#news=html.xpath('/html/body/div[2]/div[1]/div[2]/div[2]/div/div[3]/div[3]/h4/a/text()')
news_dic=dict(zip(news,herf))#把标题和链接储存到字典
for k,v in news_dic.items():
news_dictall[k]=v #每一页的字典合并
return(news_dictall)#返回总字典
def ifsim(topicwords):
news_dicfin={}
news_dic=getdata()
ana.set_stop_words('D:\作业\python\文本挖掘\数据集\新闻数据集\data\stopwords.txt') # 输入停用词
for k,v in news_dic.items():
word_list=ana.extract_tags(k,topK=50,withWeight=False) #去除停用词+词频分析
#word_lil.append(word_list)
word_lil=[]
for i in word_list:
word_lil.append([i])#将分词转化为list in list 形式以便传入dictionary
word_dic=Dictionary(word_lil)#转化为dictionary词典形式 以便分析
d=dict(word_dic.items())
docwords=set(d.values())
#相关度计算
commwords=topicwords.intersection(docwords)#取交集
if len(commwords)>0:#交集>0符合条件的存入最终的字典
news_dicfin[k]=v
print(news_dicfin)
if __name__=='__main__':
topicwords={"疫情","新冠","肺炎","确诊","病例"}
ifsim(topicwords)