计算机组成原理知识点总结详细版
计算机组成原理知识点总结——详细版
计算机组成原理2009年12月期末考试复习大纲
第一章
1.计算机软件的分类。
P11 计算机软件一般分为两大类:一类叫系统程序,一类叫应用程序。
2.源程序转换到目标程序的方法。
P12 源程序是用算法语言编写的程序。
目标程序(目的程序)是用机器语言书写的程序。
源程序转换到目标程序的方法一种是通过编译程序把源程序翻译成目的程序,另一种是通过解释程序解释执行。
3.怎样理解软件和硬件的逻辑等价性。
P14 因为任何操作可以有软件来实现,也可以由硬件来实现;任何指令的执行可以由硬件完成,也可以由软件来完成。对于某一机器功能采用硬件方案还是软件方案,取决于器件价格,速度,可靠性,存储容量等因素。因此,软件和硬件之间具有逻辑等价性。
第二章
1.定点数和浮点数的表示方法。
P16 定点数通常为纯小数或纯整数。
X=XnXn-1…..X1X0
Xn为符号位,0表示正数,1表示负数。其余位数代表它的量值。
纯小数表示范围0≤|X|≤1-2
纯整数表示范围0≤|X|≤2 -1 n-n
浮点数:一个十进制浮点数N=10E.M。一个任意进制浮点数N=RE.M 其中M称为浮点数的尾数,是一个纯小数。E称为浮点数的指数,是一个整数。 比例因子的基数R=2对二进制计数的机器是一个常数。
做题时请注意题目的要求是否是采用IEEE754标准来表示的浮点数。
32位浮点数S(31)E(30-23)M(22-0)
64位浮点数S(63)E(62-52)M(51-0)
S是浮点数的符号位0正1负。E
M为尾数。P18
P18
2.数据的原码、反码和补码之间的转换。数据零的三种机器码的表示方法。
P21 一个正整数,当用原码、反码、补码表示时,符号位都固定为0,用二进制表示的数位值都相同,既三种表示方法完全一样。
一个负整数,当用原码、反码、补码表示时,符号位都固定为1,用二进制表示的数位值都不相同,表示方法。
1.原码符号位为1不变,整数的每一位二进制数位求反得到反码;
2.反码符号位为1不变,反码数值位最低位加1,得到补码。
例:x= (+122)10=(+1111010)2原码、反码、补码均Y=(-122)10=(-1111010)2原反补+0 原反补-0 原反补3.定点数和浮点数的加、减法运算:公式的运用、溢出的判断。
P63 已知x和y,用变形补码计算x+y,同时指出结果是否溢出。
(1) x=11011 y=00011 (2)x=11011 y=-10101 (3)x=-10110 y=-00001
已知x和y,用变形补码计算x-y,同时指出结果是否溢出。
(1) x=11011 y=-11111 (2)x=10111 y=11011 (3)x=11011 y=-10011
P63 设阶码3位,尾数6位,按浮点运算方法,完成下列取值的[x+y],[ x-y]运算.
(2)x= 2-101*(-0.010110)y=2-100*(0.010110)
P29 溢出的判断:第一种方法是采用双符号位法(变形补码)。
任何正数,两个符号位都是“0”, 任何负数,两个符号位都是“1”,如果两个数相加后,其结果的符号位出现“01”或“10”两种组合时,表示发生溢出。最高符号位永远表示结果的正确符号。第二种方法是采用单符号位法。 P30
4.运算器可以执行哪些运算?
算术运算:加法,减法运算,乘法,除法运算。
逻辑运算:逻辑与,或,非运算等。
5.数据的不同进制表示。 P18
一、二进制数转换成十进制数
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。
二、十进制数转换为二进制数
十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
2.十进制小数转换为二进制小数
十进制小数转换