手机上什么软件可以将图片裁成圆角_手机摄影丨Snapseed图片处理,简单操作变废为宝,你也可以做到!...

目前手机后期处理软件有很多如:Snapseed、MIX、泼辣修图等。

如果哪一款软件是最全面、最专业,我认为非snapseed 莫属。这款软件苹果安卓都可下载,都是免费的,手机摄影后期用好Snapseed 已经足够了。(找不到的也可以联系小编,留言邮箱。)

37d0e52c6f77bc0fd2a12963404b7766.png

Snapseed 界面简洁明了,直接点打开照片,可以直接选择拍摄,也可以打开手机照片库。

e632689818056383777814ecb89f540a.png

打开随手拍的一张照片,因为光线很暗,严重有畸变,出来的片子感觉没有细节,觉得都可以删了,但是这次拿它试试 snapseed,就可以知道 snapseed 的强大了。

13fc5ee432ab5387683db8e42f9eb7eb.png
f1088e3a5259f91630032b60555d0b9b.png

打开之后的界面就是这样,底下并排有3个功能键。

第一个是样式(也就是滤镜)

第二个是工具(各种调整工具)

第三个是导出(图片调整完毕图片)

bd1a31df0b0ada73f91020bd1b00787a.png
b1d38dfb7f53a438d8debf93f641d501.png
efa6c8852f64ba607e50bb139476f6cd.png

工具部分内容介绍。

1、调整图片(对比度、亮度、饱和度等)

1e02d04554530c57ffa7e52d4afb0cf9.png

Snapseed调整图片,出现这样的选择菜单,选择不同的选项:亮度、氛围、对比度、饱和度、阴影、高光、暖色调。这些非常实用,可以单独控制高光区域的明暗,暖色调就是原来的温和度,其实就是白平衡。

099eff46f9b0fd5c0fa302d7ab18fe87.png
df382215020fd78d54fed2c3f5db764b.png

简单一修,是不是化腐朽为神奇,太逆天了,再过几年,谁还会辛苦背相机拍照再电脑修图啊。

2、透视调整(调整画面畸变)

黑色的四个圆角可以在屏幕上自由滑动,来调整畸变程度。

f2b7acdaa72691f831f9c567202a79c8.png
90ea0163818291d1cfb5dad114e0d230.png

3、突出细节调整(增加锐化,出样片)

细节这个就非常简单,上下滑动选项就两个,一个是结构(有点类似增减对比度),一个锐度。

303c26edd3590ac0ddaaf1a11fae648b.png
27ee09b860d58984bc311300d10f5f91.png
a933c009e3b1c8ef5dd76defc1c32807.png

4、导出图片

2831cf1573e695554d20803ddddd0919.png
ebdc942ad22fb809edf0de70bae913e1.png
6d90a393e037286e7b63311384f36423.png

5、处理完毕样图

b70866fb5a4f8d347704ee590d6a7092.png

以上是 Snapseed 软件修图基础工具的讲解,如果您喜欢可以分享一下哦!!请关注我们头条帐号(摄影师左海华),了解更多摄影知识。

Sure! Here's an example code snippet in Python that uses the OpenCV library to remove the black background from images in a folder crop them into 128x128 image blocks```python import cv2 import os def remove_black_background(image): # Convert image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Threshold the grayscale image to create a binary mask _, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY) # Find contours in the mask contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find the largest contour largest_contour = max(contours, key=cv2.contourArea) # Create a mask for the largest contour mask = cv2.drawContours(mask, [largest_contour], 0, (255, 255, 255), thickness=cv2.FILLED) # Bitwise-AND the original image with the mask to remove the black background result = cv2.bitwise_and(image, image, mask=mask) return result def crop_image_blocks(image, block_size): # Get the dimensions of the image height, width = image.shape[:2] # Calculate the number of blocks in each dimension num_blocks_x = width // block_size num_blocks_y = height // block_size cropped_images = [] # Iterate through each block and crop the image for y in range(num_blocks_y): for x in range(num_blocks_x): start_x = x * block_size start_y = y * block_size end_x = (x + 1) * block_size end_y = (y + 1) * block_size cropped_image = image[start_y:end_y, start_x:end_x] cropped_images.append(cropped_image) return cropped_images def process_images(input_folder, output_folder, block_size=128): # Create the output folder if it doesn't exist os.makedirs(output_folder, exist_ok=True) # Get the list of image file names in the input folder image_files = [f for f in os.listdir(input_folder) if f.endswith('.jpg') or f.endswith('.png')] for image_file in image_files: # Read the image image_path = os.path.join(input_folder, image_file) image = cv2.imread(image_path) # Remove black background image = remove_black_background(image) # Crop image into blocks cropped_images = crop_image_blocks(image, block_size) # Save cropped images for i, cropped_image in enumerate(cropped_images): output_file = f"{os.path.splitext(image_file)[0]}_{i}.png" output_path = os.path.join(output_folder, output_file) cv2.imwrite(output_path, cropped_image) # Example usage input_folder = '/path/to/input/folder' output_folder = '/path/to/output/folder' process_images(input_folder, output_folder) ``` Make sure to replace `'/path/to/input/folder'` and `'/path/to/output/folder'` with the actual paths to your input and output folders. The code assumes that the input folder contains only image files (JPEG or PNG).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值