矩形法_关于学习拉格朗日矩形单元和serendipity四边形单元形函数的构造方法

本文介绍了拉格朗日矩形单元和Serendipity四边形单元的形函数构造方法。从拉格朗日多项式出发,详细讲解了一维杆单元、线性矩形单元的形函数,并探讨了5节点Serendipity四边形单元的形函数构造,包括中心节点和边中点节点的情况。内容适用于有限元法的学习者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于我薄弱的力学知识,看了王勖成的《有限单元法》中直接给出了线性矩形单元的形函数值。百思不得其解,多方查找资料终于有些眉目,做下笔记。

拉格朗日矩形单元顾名思义肯定是跟拉格朗日多项式有着千丝万缕的联系。利用两个坐标方向适当方次的拉格朗日多项式的乘积即可获得任意拉格朗日矩形单元的形函数。

1.1 首先介绍拉格朗日(Lagrange)多项式

符号

表示
j 范围内 i
j 的所有项的乘积。

14311bfb9a603907c4be11e9906d58f3.png

位移函数的插值为

7bed4d7d2a46f29fa77d402b4ebd903b.png

1.2 二节点的一维杆单元。

<think>好的,我现在需要处理用户关于四边形单元形函数的问题。首先,用户明确提到了有限元分析数学公式,所以我需要围绕这些点展开。根据系统指令,我得确保所有数学表达式正确使用$...$或$$...$$格式,并且引用相关文献。 首先,我得回忆四边形单元形函数的基础知识。四边形单元常用的有双线性形函数,比如四节点等参单元形函数需要满足单位分解条件插值性质。每个节点的形函数在对应节点处为1,其他节点处为0。这部分可能需要引用到拉格朗日形函数,因为用户提供的引用[1]提到了形函数的分类,这里可以联系起来。 接下来,数学表达式的部分。四边形单元的局部坐标通常是(ξ, η),范围在[-1,1]之间。四节点的形函数一般形式是Ni = 1/4*(1 ± ξ)(1 ± η)。需要写成LaTeX,用行内公式还是独立公式?根据用户要求,行内用$,独立成段的用$$。比如形函数的表达式可能需要单独成段,所以用$$...$$。 然后,可能需要提到等参变换,将局部坐标映射到物理坐标。这部分涉及到积分,可能需要引用微积分基本定理,即引用[2]中的内容。不过用户的问题主要是形函数,所以积分可能是在刚度矩阵构建时用到,可以提到刚度矩阵推导中的积分步骤,引用[3]中的总刚度矩阵相关内容。 用户可能还关心形函数的性质,比如相容性完备性,或者高阶四边形单元如八节点、九节点的形函数。这时候可能需要扩展到二次形函数,比如Serendipity单元或Lagrangian单元,这时候形函数的形式会更复杂,包含二次项。这部分需要详细写出数学公式,并确保正确性。 另外,需要检查是否有遗漏的要点。比如四边形单元的应用场景,可能涉及到有限元网格划分的优势,或者对不规则区域的适应性。不过用户的问题更偏向数学公式,所以可能需要侧重推导过程。 可能还需要对比四边形单元三角形单元的不同,但用户没有提到这点,所以可能不需要展开。不过如果涉及到形函数构造方法,可以简要说明四边形使用双线性,而三角形使用面积坐标。 最后,生成相关问题。根据用户之前的示例,问题应该围绕四边形单元形函数的相关扩展,比如构造方法、高阶单元、验证性质、等参变换的应用等。需要确保问题具体且有针对性。 现在需要整合这些思路,确保结构清晰,数学公式正确,引用适当的参考文献。注意用户提供的引用[1]、[2]、[3],特别是引用[1]关于形函数的分类引用[3]关于刚度矩阵有限元方程组的建立。在回答中合理插入这些引用,比如在介绍形函数时引用[1],在讨论刚度矩阵积分时引用[3]。 可能还需要注意用户提到的“数学或工程计算内容”,所以需要兼顾理论应用,比如形函数在位移场定义中的作用,以及在实际有限元分析中的计算步骤。 总结回答结构:首先定义四边形单元形函数,给出数学表达式,讨论其性质,然后介绍等参变换,最后说明在刚度矩阵中的应用。每个部分都需包含公式,并适当引用。</think>### 四边形单元形函数详解 #### 1. **基本定义与数学表达式** 四边形单元形函数用于描述单元内任意点的位移场分布。对于四节点四边形等参单元,其局部坐标系为$(\xi,\eta) \in [-1,1] \times [-1,1]$,形函数$N_i(\xi,\eta)$需满足: - **单位分解性**:$\sum_{i=1}^4 N_i = 1$ - **插值性**:$N_i(\xi_j,\eta_j) = \delta_{ij}$(在节点$j$处为1,其他节点为0) 四节点四边形单元形函数为: $$ N_i(\xi,\eta) = \frac{1}{4}(1+\xi_i\xi)(1+\eta_i\eta) $$ 其中$(\xi_i,\eta_i)$为节点$i$的局部坐标,例如节点1对应$(-1,-1)$,节点2对应$(1,-1)$等[^1]。 #### 2. **等参变换与坐标映射** 通过形函数将局部坐标映射到物理坐标$(x,y)$: $$ x = \sum_{i=1}^4 N_i x_i, \quad y = \sum_{i=1}^4 N_i y_i $$ 其中$(x_i,y_i)$为节点的物理坐标。这种映射保留了单元几何形状的线性特性。 #### 3. **高阶四边形单元形函数** - **八节点Serendipity单元**:形函数包含二次项,例如边中节点形函数为: $$ N_5(\xi,\eta) = \frac{1}{2}(1-\xi^2)(1-\eta) $$ - **九节点Lagrangian单元**:在四边形中心增加一个节点,形函数包含双二次项。 #### 4. **刚度矩阵构建中的应用** 单元刚度矩阵$[K^e]$通过积分计算: $$ [K^e] = \int_{-1}^{1} \int_{-1}^{1} [B]^T [D] [B] |J| \, d\xi d\eta $$ 其中: - $[B]$为应变-位移矩阵,由形函数导数构成 - $|J|$为雅可比行列式,用于局部到物理坐标的积分转换[^3] --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值