qcustomplot绘制动态曲线_【高等数学】Geogebra绘制旋转曲面

41467a4571453ddc4fa0f3212f2463ef.png

为了看起来习惯,只考虑

面上的曲线
轴旋转,形成的旋转曲面。

用 Geogebra 实现的基本步骤是:

(i)将曲线

表示为空间曲线的参数方程形式;

(ii)用【曲线】命令绘制曲线:

曲线(x(t), y(t), z(t), t, t起始值, t终止值)

(iii)用【曲面】命令旋转出曲面:

曲面(曲线, 旋转角度, 旋转轴)

另外,为了能让图形动起来,可以将“曲线中的参数”和“旋转角度”设为【滑动条】。

下面通过 4 个实例来看一下:

例1(同济版8.5例3) 两条相交直线,夹角为

, 旋转成圆锥面(同济版8.5例3)

将直线

作为
轴,

将夹角

用【滑动条】表示,范围从
;

(1)将

表示为空间曲线的参数方程形式

借助图形来看,

3215368a9b10cb934690eb50c58818d2.png

(2)用【曲线】命令绘制曲线:

曲线((0, t tan(α), t), t, -5, 5)

(3)用【曲面】命令旋转出曲面:

旋转角度

用【滑动条】表示,范围从
;
曲面(a, θ, z轴)

63f408a53c85ad55b98494b937a54b47.png

拖动

就可以观察旋转曲面动态生成的过程。

例2 用半圆旋转成球面。

(1)

面上的半圆:

改写成空间曲线的参数方程形式:

(2)用【曲线】命令绘制曲线:

曲线((0, R cos(t), R sin(t)), t, -π/2, π/2)

(3)用【曲面】命令旋转出曲面:

旋转角度

用【滑动条】表示,范围从
;
曲面(a, θ, z轴)

0eb40aff083762870ed8afa29121a39f.png

拖动

就可以观察旋转曲面动态生成的过程。

例3 用半支双曲线旋转成单叶双曲面。

(1)

面上半支双曲线:

改写成参数方程形式:

(2)用【曲线】命令绘制曲线:

曲线((0, a sec(t), b tan(t)), t, -π/2, π/2)

(3)用【曲面】命令旋转出曲面:

旋转角度

用【滑动条】表示,范围从
;
曲面(c, θ, z轴)

36cd59b1348a5bbdab5a7b40b6d7defd.png

例4(同济版8.6图8-55) 两条异面直线旋转,得到单叶双曲面。

(1)直线参数方程直接给了,

(2)用【曲线】命令绘制曲线:

曲线((1, t, 2t), t, -5, 5)

(3)用【曲面】命令旋转出曲面:

旋转角度

用【滑动条】表示,范围从
;
曲面(a, θ, z轴)

84fd640d1f7ff3b0b5f7a49086d077af.png

——————————————————————

原创作品,转载请注明。

<think>好的,用户之前问过零基础如何学习编程,现在又转向高等数学怎么学。可能需要了解用户的学习背景,比如是否是同一用户,现在需要学习高数,但之前是编程零基础。可能用户现在在学习编程之后,需要进一步学习高数来加强相关领域,比如数据分析、机器学习等,或者用户本身是大学生,需要应对课程。 用户需求是学习高数的方法,但需要具体分析他们的学习目的。比如,是为了考试,还是为了应用在编程或工程领域?不同目的学习方法可能不同。另外,用户之前接受过编程学习的建议,可能偏好结构化的学习路径,分阶段的方法,以及注重实践和项目驱动。 需要结合高数的特点,强调理解概念而非死记硬背,联系实际应用,比如编程中的数学应用,或者物理、工程中的例子。同时,高数的难点可能在于抽象概念如极限、导数、积分,以及证明题,所以需要提供具体的学习策略来应对这些挑战。 还要考虑用户可能缺乏数学基础,或者已经有一些基础需要加强。可能需要推荐资源,如教材、在线课程、习题集,以及学习工具如MATLAB、Python的NumPy库等,帮助实践。 另外,用户可能遇到的常见问题,比如如何应对复杂的公式推导,如何处理证明题,如何将数学知识应用到实际问题中,这些都需要在回答中给出解决方案。同时,结合之前编程学习的建议,可以建议用户通过编程实践来辅助高数学习,例如用Python实现数值计算或可视化,增强理解。 最后,需要结构化回答,分阶段、分模块,提供学习策略、资源推荐、常见误区及应对方法,可能还要包括时间规划建议,让用户有清晰的路径可循。</think>以下是针对高等数学学习的系统化指导方案,结合数学思维培养与工程应用需求,分模块构建知识体系: --- ### 一、认知重构阶段(1-4周) #### 1. 建立数学语言体系 - **符号解码训练**: - 极限符号:$\lim\limits_{x \to a}f(x)=L$ 的ε-δ定义理解 - 微分算子:$\frac{d}{dx}$ 与积分符号$\int$ 的物理/几何意义 - 级数表示:$\sum_{n=1}^{\infty}a_n$ 的收敛性判断标准 #### 2. 三维理解框架 ```markdown 几何视角:导数=切线斜率,积分=面积体积 代数视角:微分方程求解技巧 物理视角:牛顿定律F=ma的微分方程形式 ``` --- ### 二、核心模块攻坚策略 #### 1. 微积分三部曲 | 模块 | 关键突破点 | 典型例题 | |------------|-----------------------------|-----------------------------------| | 极限与连续 | ε-δ语言转化 | 证明$\lim\limits_{x \to 0}\frac{\sin x}{x}=1$ | | 微分学 | 隐函数求导法 | 求$x^y + y^x = 1$的导数 | | 积分学 | 换元积分技巧 | 计算$\int \frac{1}{\sqrt{x}(1+x)}dx$ | #### 2. 线性代数矩阵革命 - **可视化工具**:使用Python的matplotlib绘制向量空间 - **核心定理实践**: ```python import numpy as np # 矩阵特征值计算 A = np.array([[4, 1], [2, 3]]) eigenvalues = np.linalg.eigvals(A) ``` --- ### 三、工程思维培养方案 #### 1. 物理建模案例库 - **弹簧振动系统**: $$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$$ - **热传导方程**: $$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$ #### 2. 编程验证平台 ```python import sympy as sp x = sp.Symbol('x') # 计算泰勒展开 taylor = sp.series(sp.exp(x), x, 0, 5).removeO() ``` --- ### 四、认知工具矩阵 #### 1. 思维导图模板 ```mermaid graph TD A[多元函数微分] --> B(方向导数) A --> C(梯度向量) B --> D[最大增长率方向] C --> E[等值线法线方向] ``` #### 2. 错题本建设标准 | 错误类型 | 记录要素 | 改进策略 | |--------------|--------------------------|-----------------------| | 概念误解 | 错误理解+正确定义 | 制作对比表格 | | 计算失误 | 错误步骤标红+正确流程 | 设计检查清单 | | 方法缺失 | 题目特征分析+方法选择树 | 建立方法决策流程图 | --- ### 五、学习资源网络 #### 1. 经典教材矩阵 ```markdown 1. 《托马斯微积分》- 图形化讲解最佳 2. 《线性代数应该这样学》- 强化几何理解 3. 《普林斯顿微积分读本》- 问题驱动学习 ``` #### 2. 视频课程平台 - **基础巩固**:中国大学MOOC(同济大学高等数学) - **工程应用**:MIT OpenCourseWare 18.01SC - **难点突破**:3Blue1Brown《微积分的本质》系列 --- ### 六、常见误区规避指南 1. **警惕**:盲目刷题不总结(每题需完成:方法归类→关键步骤→变式设想) 2. **避免**:过度依赖计算器(重点训练符号运算能力) 3. **克服**:惧怕证明题(从仿写标准证明入手,如中值定理证明) --- ### 七、实践提升路径 #### 1. 数学实验项目 - **常微分方程可视化**:用Python绘制不同初始条件下的解曲线 - **曲面积分实践**:计算抛物面$z=x^2+y^2$在区域$x^2+y^2≤1$的表面积 #### 2. 跨学科应用 ```matlab % 信号处理中的傅里叶变换应用 t = 0:0.001:1; y = sin(2*pi*50*t) + 0.5*randn(size(t)); Y = fft(y); ``` --- ### 八、能力评估体系 | 能力等级 | 达标标准 | 应用场景 | |----------|-----------------------------------|-----------------------| | 基础级 | 掌握单变量微积分核心计算方法 | 基础物理课程 | | 进阶级 | 能建立简单微分方程模型并求解 | 工程系统建模 | | 专业级 | 熟练运用场论处理多元问题 | 机器学习算法推导 | --- **关键策略**:建议使用Geogebra动态几何软件辅助理解空间解析几何,建立每周2次的问题研讨小组(重点讨论如格林公式的物理意义)。将重要定理(如高斯定理)制作成思维动画,通过费曼学习法向他人讲解拉格朗日中值定理的应用场景。在掌握基础后,尝试用Matlab完成《数学实验》教材中的综合性案例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值