
为了看起来习惯,只考虑
用 Geogebra 实现的基本步骤是:
(i)将曲线
(ii)用【曲线】命令绘制曲线:
曲线(x(t), y(t), z(t), t, t起始值, t终止值)
(iii)用【曲面】命令旋转出曲面:
曲面(曲线, 旋转角度, 旋转轴)
另外,为了能让图形动起来,可以将“曲线中的参数”和“旋转角度”设为【滑动条】。
下面通过 4 个实例来看一下:
例1(同济版8.5例3) 两条相交直线,夹角为
将直线
将夹角
(1)将
借助图形来看,

(2)用【曲线】命令绘制曲线:
曲线((0, t tan(α), t), t, -5, 5)
(3)用【曲面】命令旋转出曲面:
旋转角度
曲面(a, θ, z轴)

拖动
例2 用半圆旋转成球面。
(1)
改写成空间曲线的参数方程形式:
(2)用【曲线】命令绘制曲线:
曲线((0, R cos(t), R sin(t)), t, -π/2, π/2)
(3)用【曲面】命令旋转出曲面:
旋转角度
曲面(a, θ, z轴)

拖动
例3 用半支双曲线旋转成单叶双曲面。
(1)
改写成参数方程形式:
(2)用【曲线】命令绘制曲线:
曲线((0, a sec(t), b tan(t)), t, -π/2, π/2)
(3)用【曲面】命令旋转出曲面:
旋转角度
曲面(c, θ, z轴)

例4(同济版8.6图8-55) 两条异面直线旋转,得到单叶双曲面。
(1)直线参数方程直接给了,
(2)用【曲线】命令绘制曲线:
曲线((1, t, 2t), t, -5, 5)
(3)用【曲面】命令旋转出曲面:
旋转角度
曲面(a, θ, z轴)

——————————————————————
原创作品,转载请注明。