
旋转曲面,也称回转曲面,是一类特殊的曲面,它是一条平面曲线绕着它所在的平面上一条固定直线旋转一周所生成的曲面(来源:百度百科)。
在GeoGebra中绘制旋转曲面,我们可以采用两种方法:一是直接写出旋转曲面的方程,二是用“曲面”指令中的旋转曲面的作法去绘制。方法一需要已知曲面的方程,这点不大容易实现,多数情况下,用方法二会更简单,本文要介绍的就是方法二。“曲面”指令的语法有以下三种,绘制旋转曲面,我们可用前面的两种语法。

也就是说,我们可以将函数或曲面绕一定的转轴旋转得到旋转曲面。
案例1 正弦函数绕x轴旋转得到的曲面

绘制过程:f(x) = 如果(0 ≤ x ≤ 4π, sin(x))
a = 曲面(f, 2π, x轴)
案例2 玫瑰线绕y轴旋转得到的曲面

绘制方法:a = 曲线((2sin(3t); t), t, 0, π)
b = 曲面(a, 2π, y轴)
注意,玫瑰线的参数方程用的是极坐标下的写法,用分号而不是逗号。
尽管“曲面”指令中,只给出了函数和曲线,但我们也可以对多边形、折线、圆锥曲线、线段等几何对象进行旋转,进而得到它们的旋转曲面,具体见以下案例。
案例3 直角三角形绕直角边旋转得到圆锥面

以上得到的是静态图,若想得到圆锥的动态生成过程,旋转角度用滑动条来控制即可,如以下动图所示:

案例4 泳圈状曲面

这个曲面可由一个圆形绕着一定的转轴旋转得到。
案例5 旋转双曲面

空间中一条直线绕另一条与之异面的直线(不垂直)旋转一周,得到单叶双曲面,著名的广州塔小蛮腰就属于这种曲面(以上动图采用了跟踪)。
案例6 参照已有形状绘制旋转曲面
有时候我们需要作出特定形状的旋转曲面,但是却不知道母线的方程,比如要绘制下图中的花瓶状曲面,这时候该怎么办呢?

对此,我们可以用样条曲线去拟和母线的形状,然后再生成旋转曲面即可。作图步骤如下:
首先,作出y=0平面,然后在这个平面上取若干个点ABCDEF,作出经过这几个点的样条曲线:
a = 样条曲线({A, B, C, D, E, F})
然后调节这几个点的位置,使曲线看上去与目标形状符合。

然后,绘制底面圆的圆心:G = (0, 0, z(F)),
构造线段: g = 线段(G, F)

最后,绘制花瓶的侧面和底面:
b = 曲面(a, 2π, z轴)
c = 曲面(g, 2π, z轴)
最后再调下样式和隐藏相关对象即可。
本文为原创作品,欢迎转发,如需转载,请联系作者并注明出处
GeoGebra物理数学可视化(公众号同名),致力于数学物理的教学与学习可视化,欢迎关注!
本文于2020/6/7首发于公众号“GeoGebra物理数学可视化”