c语言求数列中连续数值组成的等差数列最大长度_【数学分析】从阶梯函数重新认识数列...

相信很多人在高中时期,就被老师灌输“数列是特殊的函数”这一观点。当然,这一观点并没有错误,只是我们怎么样去思考这个函数,就决定了我们多大程度上能去研究它的性质。

在开始我们的正文之前,我来大致叙述一下大家对“数列是特殊的函数”可能有的观点。

为了方便起见,我们约定下面讨论的数列都是实数列,且下标都是正整数。

1.数列是

的函数

一个数列的定义域是正整数,且值的集合落在实数集上。这是最最自然的想法,我们将这种数列绘制成图象,便成为了下图所示的“散点图”

3d650adf34156e63af39e5c411d00c9d.png

诚然,在这种说法下,数列的确是一种函数。只不过这种观点实际上没能为我们带来太大的惊喜。

2.数列是某些函数在正整数下的限制

在这种观点下,数列和一些函数又对应了起来。比如

,它就可以看成函数
将定义域限制在正整数上。从而我们可以利用一些函数的工具反过来去研究数列的性质。这时候数列的图形不是不再完全是散点,而是有一条贯穿了散点的曲线。

048b463b7663945ec62a94b01d5365f1.png

在这种观点下,我们对于等差数列的公式

就不一定要求
奇偶性相同才有意义了,因为我们的下标已经把魔爪伸到实数上去了。

我们知道,限制的反义词是延拓。但是你会发现,延拓的方法并不唯一,而且有的时候你想把它延拓成的函数并不一定具有很好的性质。所以本文要介绍的阶梯函数,实质上是一种延拓的方法,并且介绍这种延拓方法延拓出的函数的一些性质。


阶梯函数

对于一个给定的数列

,我们可以把它延拓成一个函数
,满足

为了方便起见,本文将这种延拓的方式成为“右阶梯”

5d0318e8918ab23c39ffa3450fd22fa5.png
某一数列的右阶梯

同样,我们也可以延拓成左阶梯,也就是


从微积分的角度看阶梯函数

对于函数而言,微积分是不可或缺的工具。我们先从微积分的角度来看阶梯函数。

就阶梯函数的可微性而言,这个答案是比较明显的。

几乎处处都是连续可导的,在可导的点导数为

那什么叫做几乎处处呢?

几乎处处的含义

定义1:如果一个定义在集合
上的性质
在除去一个
零测集
上均成立,那我们称性质
在集合
上几乎处处成立。

那么什么叫做零测集呢?

介绍测度需要更多的内容,本文我们仅仅针对实数集而言介绍一下。

测度其实相当于是长度的推广,我们在本文中可以将测度理解为长度,举个例子。

区间

的测度为
的测度为

如果我们去除掉一些长度为

的集合,那么对整个区间上的性质影响似乎并不大。针对我们延拓出来的函数。集合上只有一堆散点是不连续点,点是没有长度的,所以延拓出来的阶梯函数几乎处处是连续的。

请大家思考一下这样说有没有逻辑问题呢?

那问题当然很大了!

线段也是由点组成的,一堆点加起来就没有长度的话,线段岂不是也没有长度喽?所以我们这个说法的逻辑问题当然是很大的。

虽然我们现在不能定义任意一个集合的长度。但是我们知道长度有这么三个性质(我们用

表示集合
的长度):
(1).单调性:若
,则

(2).完全可加性:如果
,则

(3).规范性:空集的长度为
,即

性质(2)是说,两个不同的线段的长度是可以相加的。再结合性质(3),我们知道任何一个集合的长度非负。

我们还是从最简单的区间的长度开始。我们定义一个区间

的长度
,对于闭区间而言,只差两个点,我们也定义

这样一来,半开半闭的区间,例如

,我们知道
,利用性质(1),有
,从而

利用这三个性质,我们来定义零测集。如果一个集合,它是一个零测集的子集,那么它一定长度为

我们从极限的角度去思考,我们可以用一个集合列

,它们之中每个集合都有一个长度
,如果
,并且一个集合
是这所有的
的子集(
),那么我们根据单调性和极限的保序性,我们就知道。
,从而

特殊地,我们把所有

写成若干个区间的并集,这样我们就可以利用已知的长度区推算未知的长度。

我们把上面的内容重新用极限的定义重新叙述一遍,我们就有了

定义2:如果对于任意的
,都存在至多可数个区间
,使得集合
,并且,都有
,(其中
为有限数或者
),则称
是个
零测集

那么我们考虑左阶梯函数的不连续点全体构成的集合

我们取

再取区间

,那么
,并且

从而

是一个零测集,也就是说阶梯函数几乎处处连续(右阶梯函数的不连续点集是左阶梯函数的不连续点集的子集)。

Lebesgue定理

对于一些函数来讲,它们的定积分未必都存在。如果它们的定积分存在,我们称为Riemann可积(本文简称“可积”)

事实上,勒贝格先生早就证明过:

定理1(Lebesgue定理):一个闭区间上的有界函数可积当且仅当它几乎处处连续。

考虑到阶梯函数几乎处处连续,所以它在闭区间上可积。

那我们任取两个正整数

,那么对于右阶梯函数而言。

(这里

表示前
项和,也即部分和)

同样,左阶梯函数的积分可以写成


阶梯函数对于数列估计的作用

我们知道积分具有保序性:

如果在区间
上,有
恒成立,则

从而我们可以利用这种方法去对一个数列的部分和进行估计。

例1:证明不等式:

构造函数

和数列
的右阶梯函数
,则

因此

注意到

因此不等式证完。

9be9d6826c5dd97d019bc3ed4b34eeb1.png
蓝色部分为g(x)的积分,橙色为f(x)的积分

但是其实大家可以发现,用阶梯函数放缩得到的不等式还是比较“松”的。但是有时候这种程度的不等式已经足够满足我们的需要了。


从阶梯函数认识平均值

对于一个数列

,如果我们要求其前
项的平均值,就相当于是求左阶梯函数的积分
除以
,即

那么我们其实也可以把加权平均数类似地进行定义。我们也可以类似定义一个阶梯函数

这样一来

其实总体看下来,均值都可以写成这样一个形式

。这也就是积分和求和之间最原始的联系。

所以某些程度上,数列求和和积分是一样的。那么函数有导数的工具,对于积分呢?

我们看导数的原始定义

这里我们发现,

后会导致极限为
,为了弥补数列在这方面的不足,我们固定
,则有

对于我们新定义的“导数”,就被定义为数列的差分运算。

我们知道导数其实可以反映一个函数的增减性:

对于一个连续可导的函数
,若
,则它在该点的邻域内单调不减,反之则单调不增

对于差分,我们也有类似的性质:

对于一个数列
,若它的差分数列
,则数列在这一点单调不减,反之则单调不增。

请读者们留意一下这方面的相似性。这会在我下一篇文章中继续使用。


本节习题

1.证明调和级数发散,即任意给定一个数

,都有

2.设数列

为其前
项和,求证:

*3.我们定义集合

如下:

(挖去中间
),如此反复,得到一个集合列
。然后令

求证:

是零测集

(习题提示:3.对于每一个


好了,我又写了一篇分析的东西。明明说好自己不写分析的,结果分析真香QAQ。

喜欢的不妨留个关注留个赞再走呗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值