python产品支持度_python实现apriori算法的关联规则之支持度、置信度、提升度

Apriori算法的简介

Apriori算法:使用候选项集找频繁项集

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

Apriori原理:如果某个项集是频繁的,那么它的所有子集也是频繁的。该定理的逆反定理为:如果某一个项集是非频繁的,那么它的所有超集(包含该集合的集合)也是非频繁的。Apriori原理的出现,可以在得知某些项集是非频繁之后,不需要计算该集合的超集,有效地避免项集数目的指数增长,从而在合理时间内计算出频繁项集。

支持度,置信度,提升度

支持度

表示同时购买X、Y的订单数占总订单数(研究关联规则的“长表”中的所有购买的产品的订单数)的比例。如果用P(X)表示购买X的订单比例,其他产品类推,那么

2165341a76e10ad78f1da0b3c19bce31.png

置信度

表示购买X的订单中同时购买Y的比例,即同时购买X和Y的订单数占购买X的订单的比例。公式表达:

bd731e9677f93836d659266a3a67abbf.png

提升度

提升度反映了关联规则中的X重点内容与Y的相关性:提升度 >1 且越高表明正相关性越高;提升度 <1 且越低表明负相关性越高;提升度 =1 表明没有相关性。

cb6c425c1eb7f685f018b1ce6d3b1fff.png

Apriori算法的编程实现

题目

数据集

0cbb1842d5765e6a7775982f26384e0a.png

要求:

从频繁项集结果中,提取2阶频繁项集

使用seaborn工具包,实现2阶频繁项集的热力度表示

计算2阶频繁项集的置性度(Confidence)和提升度(Lift)。定义最小置性度阈值,并生成和输出2阶关联规则

代码

20200530232442352522.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值