python实现克里金插值_如何用Python中的Kriging插值站点数据?

在尝试使用Python的pyKriging和Gaussian Process Regression库进行克里金插值时遇到困难。pyKriging库出现语法错误,而Gaussian Process Regression库缺少示例。寻求帮助以对存储在numpy数组中的站点降水量数据进行克里金插值,并期望得到每天的3D数组结果。已提供站点ID、坐标和降水量数据。
摘要由CSDN通过智能技术生成

浏览网页我发现一些在Python中使用Kriging的工具是pyKriging和Gaussian Process Regression。但是,我不能让他们中的任何一个去工作。第一个对我不起作用(甚至不能导入):

import pyKrigingFile "~/python3.6/site-packages/pyKriging/krige.py", line 142

except Exception, err:

^

SyntaxError: invalid syntax

第二个我不知道怎么用。我找不到一个简单的工作示例(例如,这个rroowwllaanndd answer很好,但遗憾的是,数据不再可供下载)

所以我的问题是,我如何用克里格插值我的数据?我有几个站点数据保存在numpy数组中,如下所示:2000 1 1 5.0

2000 1 2 3.4

2000 1 3 0.2

柱是年-月-日降水量。我有几个这样的数据数组(st1,st2,st3)和另一个数组,其中包含每个站点的ID和每个站点所在的坐标(stid,因此站点1位于经度15.6865,纬度62.6420,依此类推)。import numpy as np

st1 = np.array([[2000,1,1,5.0],[2000,1,2,3.4],[2000,1,3,0.2]])

st2 = np.array([[2000,1,1,8.2],[2000,1,2,2.5],[2000,1,3,0.0]])

st3 = np.array([[2000,1,1,np.nan],[2000,1,2,4.5],[2000,1,3,1.2]])

stid = np.array([[1,15.6865,62.6420],[2,15.7325,62.1254],[3,16.1035,61.1449]])

我需要的是每天一个数组(或一个3D数组),其中包含每天用Kriging在这样的网格中插值的所有站点的数据:y = np.arange(61,63,0.125)

x = np.arange(14,17,0.125)

X,Y = np.meshgrid(x,y)

如有任何帮助,我们将不胜感激。

Python的普通克里金插值是一种用于空间数据插值的方法。在这种方法,我们使用已知的样本点数据来推断未知位置的数据。下面是一个使用Python进行普通克里金插值的示例代码: ```python import gma import pandas as pd # 读取Excel的样本数据 Data = pd.read_excel("Interpolate.xlsx") Points = Data.loc[:, ['经度','纬度']].values Values = Data.loc[:, ['值']].values # 定义插值参数和模型 KD = gma.smc.Interpolate.Kriging(Points, Values, Resolution=0.05, VariogramModel='Spherical', VariogramParameters=None, KMethod='Ordinary', InProjection='EPSG:4326') # 将插值结果写入栅格文件 gma.rasp.WriteRaster(r'.\gma_OKriging.tif', KD.Data, Projection='WGS84', Transform=KD.Transform, DataType='Float32') ``` 以上代码,我们首先读取了保存样本数据的Excel文件,并提取出经度和纬度的坐标以及对应的样本值。然后,我们使用这些样本数据进行克里金插值,指定了插值的分辨率、变异函数模型等参数。最后,将插值结果写入一个栅格文件。 这样,我们就可以使用Python进行普通克里金插值了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [python克里金插值](https://blog.csdn.net/qq_35591253/article/details/128773189)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【Python进阶】克里金插值法的实现过程](https://blog.csdn.net/qq_38140292/article/details/127953822)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值