前言:最近在研究代理模型,涉及到Kriging模型的实现,通过查阅相关网站找到了一个Kriging算法的实现方式
介绍
- Kriging在理解稀疏数据的方面是非常有价值的工具
- 事实证明,其在工程和数据昂贵、难以收集的领域,具有较强的应用价值
要理解kriging算法背后的数学原理,请参考下列资源:https://link.springer.com/article/10.1023/A:1012771025575link.springer.com
https://www.amazon.com/Engineering-Design-via-Surrogate-Modelling/dp/0470060689/ref=sr_1_3?ie=UTF8&qid=1421609474&sr=8-3&keywords=Surrogate+Modelwww.amazon.com
Pykriging工具箱的目的是使得Kriging法在Python中更易于使用。
安装方式
pip install pykriging
使用pyKriging
pyKriging的目的旨在简化代理模型的创建过程。下列例子演示了如何创建抽样计划、在这些位置评估测试函数、创建和训练一个Kriging模型、并且添加点来减少模型的均方根误差。
import pyKriging
from pyKriging.krige import kriging
from pyKriging.samplingplan import samplingplan
# The Kriging model starts by defining a sampling plan, we use an optimal Latin Hypercube here<