seq2seq模型能做许多事情。典型的例如翻译,输入法,问答机器人等。其实一般的自然语言处理领域的问题也可以转化为seq2seq,例如分类问题。
本文首先讲一下seq2seq中的encoder-decoder模型。其中包含了一些对现在典型错误seq2seq理解的纠正。
一个非常典型的encoder模型的图是下图这样的。
这个图这样的有一个问题就是,人们认为向右的箭头是RNN按照时间展开的。按照这个理解,encoder部分的RNN和decoder部分的RNN是同一个RNN。
而实际上这是错误的。encoder部分的RNN和decoder部分的RNN并不是同一个RNN。
而一个RNN中也不止有一个细胞。
通过一段简单的代码可以很清楚的看明白这个模型
RNN