encoder decoder模型_关于seq2seq之encoder-decoder

seq2seq模型能做许多事情。典型的例如翻译,输入法,问答机器人等。其实一般的自然语言处理领域的问题也可以转化为seq2seq,例如分类问题。

本文首先讲一下seq2seq中的encoder-decoder模型。其中包含了一些对现在典型错误seq2seq理解的纠正。

一个非常典型的encoder模型的图是下图这样的。

10c4683704149376a486b2ec9980206f.png

这个图这样的有一个问题就是,人们认为向右的箭头是RNN按照时间展开的。按照这个理解,encoder部分的RNN和decoder部分的RNN是同一个RNN。

而实际上这是错误的。encoder部分的RNN和decoder部分的RNN并不是同一个RNN。

而一个RNN中也不止有一个细胞。

通过一段简单的代码可以很清楚的看明白这个模型

RNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值