k近邻算法python解读_Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)...

运行平台: Windows

IDE: Sublime text3

一、简单k-近邻算法

本文将从k-近邻

1、k-近邻法简介

k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。表1.1 每部电影的打斗镜头数、接吻镜头数以及电影类型

表1.1 就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点,不同的地方在于,我们的经验更"牛逼",而k-近邻算法是靠已有的数据。比如,你告诉我这个电影打斗镜头数为2,接吻镜头数为102,我的经验会告诉你这个是爱情片,k-近邻算法也会告诉你这个是爱情片。你又告诉我另一个电影打斗镜头数为49,接吻镜头数为51,我"邪恶"的经验可能会告诉你,这有可能是个"爱情动作片",画面太美,我不敢想象。 (如果说,你不知道"爱情动作片"是什么?请评论留言与我联系,我需要你这样像我一样纯洁的朋友。) 但是k-近邻算法不会告诉你这些,因为在它的眼里,电影类型只有爱情片和动作片,它会提取样本集中特征最相似数据(最邻近)的分类标签,得到的结果可能是爱情片,也可能是动作片,但绝不会是"爱情动作片"。当然,这些取决于数据集的大小以及最近邻的判断标准等因素。

2、距离度量

我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢? 如图1.1所示。图1.1 电影分类

我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。

通过计算,我们可以得到如下结果:(101,20)->动作片(108,5)的距离约为16.55

(101,20)->动作片(115,8)的距离约为18.44

(101,20)->爱情片(5,89)的距离约为118.22

(101,20)->爱情片(1,101)的距离约为128.69

通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-近邻算法是什么呢?k-近邻算法步骤如下:计算已知类别数据集中的点与当前点之间的距离;

按照距离递增次序排序;

选取与当前点距离最小的k个点;

确定前k个点所在类别的出现频率;

返回前k个点所出现频率最高的类别作为当前点的预测分类。

比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。

3、Python3代码实现

我们已经知道了k-近邻算法的原理,那么接下来就是使用Python3实现该算法,依然以电影分类为例。

(1)准备数据集

对于表1.1中的数据,我们可以使用numpy直接创建,代码如下:

# -*- coding: UTF-8 -*-

import numpy as np

"""函数说明:创建数据集Parameters:无Returns:group - 数据集labels - 分类标签Modify:2017-07-13"""

def createDataSet():

#四组二维特征

group = np.array([[1,101],[5,89],[108,5],[115,8]])

#四组特征的标签

labels = ['爱情片','爱情片','动作片','动作片']

return group, labels

if __name__ == '__main__':

#创建数据集

group, labels = createDataSet()

#打印数据集

print(group)

print(labels)

运行结果,如图1.3所示:图1.3 运行结果

(2)k-近邻算法

根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

# -*- coding: UTF-8 -*-

import numpy as np

import operator

"""函数说明:创建数据集Parameters:无Returns:group - 数据集labels - 分类标签Modify:2017-07-13"""

def createDataSet():

#四组二维特征

group = np.array([[1,101],[5,89],[108,5],[115,8]])

#四组特征的标签

labels = ['爱情片','爱情片','动作片','动作片']

return group, labels

"""函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点Returns:sortedClassCount[0][0] - 分类结果Modify:2017-07-13"""

def classify0(inX, dataSet, labels, k):

#numpy函数shape[0]返回dataSet的行数

dataSetSize = dataSet.shape[0]

#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)

diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet

#二维特征相减后平方

sqDiffMat = diffMat**2

#sum()所有元素相加,sum(0)列相加,sum(1)行相加

sqDistances = sqDiffMat.sum(axis=1)

#开方,计算出距离

distances = sqDistances**0.5

#返回distances中元素从小到大排序后的索引值

sortedDistIndices = distances.argsort()

#定一个记录类别次数的字典

classCount = {}

for i in range(k):

#取出前k个元素的类别

voteIlabel = labels[sortedDistIndices[i]]

#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。

#计算类别次数

classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

#python3中用items()替换python2中的iteritems()

#key=operator.itemgetter(1)根据字典的值进行排序

#key=operator.itemgetter(0)根据字典的键进行排序

#reverse降序排序字典

sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

#返回次数最多的类别,即所要分类的类别

return sortedClassCount[0][0]

if __name__ == '__main__':

#创建数据集

group, labels = createDataSet()

#测试集

test = [101,20]

#kNN分类

test_class = classify0(test, group, labels, 3)

#打印分类结果

print(test_class)

运行结果,如图1.4所示:图1.4 运行结果

可以看到,分类结果根据我们的"经验",是正确的,尽管这种分类比较耗时,用时1.4s。

到这里,也许有人早已经发现,电影例子中的特征是2维的,这样的距离度量可以用两 点距离公式计算,但是如果是更高维的呢?对,没错。我们可以用欧氏距离(也称欧几里德度量),如图1.5所示。我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。图1.5 欧氏距离公式

看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同。为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率-分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-近邻算法不具有显式的学习过程。

二、k-近邻算法实战之约会网站配对效果判定

上一小结学习了简单的k-近邻算法的实现方法,但是这并不是完整的k-近邻算法流程,k-近邻算法的一般流程:收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。

准备数据:使用Python解析、预处理数据。

分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。

测试算法:计算错误率。

使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。

已经了解了k-近邻算法的一般流程,下面开始进入实战内容。

1、实战背景

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:不喜欢的人

魅力一般的人

极具魅力的人

海伦收集的样本数据主要包含以下3种特征:每年获得的飞行常客里程数

玩视频游戏所消耗时间百分比

每周消费的冰淇淋公升数

这里不得不吐槽一句,海伦是个小吃货啊,冰淇淋公斤数都影响自己择偶标准。打开txt文本文件,数据格式如图2.1所示。图2.1 datingTestSet.txt格式

2、准备数据:数据解析

在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?从上小结已经知道,要将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN_test02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。 将datingTestSet.txt放到与kNN_test02.py相同目录下,编写代码如下:

# -*- coding: UTF-8 -*-

import numpy as np

"""函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24"""

def file2matrix(filename):

#打开文件

fr = open(filename)

#读取文件所有内容

arrayOLines = fr.readlines()

#得到文件行数

numberOfLines = len(arrayOLines)

#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列

returnMat = np.zeros((numberOfLines,3))

#返回的分类标签向量

classLabelVector = []

#行的索引值

index = 0

for line in arrayOLines:

#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')

line = line.strip()

#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。

listFromLine = line.split('\t')

#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵

returnMat[index,:] = listFromLine[0:3]

#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力

if listFromLine[-1] == 'didntLike':

classLabelVector.append(1)

elif listFromLine[-1] == 'smallDoses':

classLabelVector.append(2)

elif listFromLine[-1] == 'largeDoses':

classLabelVector.append(3)

index += 1

return returnMat, classLabelVector

"""函数说明:main函数Parameters:无Returns:无Modify:2017-03-24"""

if __name__ == '__main__':

#打开的文件名

filename = "datingTestSet.txt"

#打开并处理数据

datingDataMat, datingLabels = file2matrix(filename)

print(datingDataMat)

print(datingLabels)

运行上述代码,得到的数据解析结果如图2.2所示。图2.2 数据解析结果

可以看到,我们已经顺利导入数据,并对数据进行解析,格式化为分类器需要的数据格式。接着我们需要了解数据的真正含义。可以通过友好、直观的图形化的方式观察数据。

3、分析数据:数据可视化

在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化。编写代码如下:

# -*- coding: UTF-8 -*-

from matplotlib.font_manager import FontProperties

import matplotlib.lines as mlines

import matplotlib.pyplot as plt

import numpy as np

"""函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24"""

def file2matrix(filename):

#打开文件

fr = open(filename)

#读取文件所有内容

arrayOLines = fr.readlines()

#得到文件行数

numberOfLines = len(arrayOLines)

#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列

returnMat = np.zeros((numberOfLines,3))

#返回的分类标签向量

classLabelVector = []

#行的索引值

index = 0

for line in arrayOLines:

#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')

line = line.strip()

#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。

listFromLine = line.split('\t')

#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵

returnMat[index,:] = listFromLine[0:3]

#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力

if listFromLine[-1] == 'didntLike':

classLabelVector.append(1)

elif listFromLine[-1] == 'smallDoses':

classLabelVector.append(2)

elif listFromLine[-1] == 'largeDoses':

classLabelVector.append(3)

index += 1

return returnMat, classLabelVector

"""函数说明:可视化数据Parameters:datingDataMat - 特征矩阵datingLabels - 分类LabelReturns:无Modify:2017-03-24"""

def showdatas(datingDataMat, datingLabels):

#设置汉字格式

font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)

#将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)

#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域

fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))

numberOfLabels = len(datingLabels)

LabelsColors = []

for i in datingLabels:

if i == 1:

LabelsColors.append('black')

if i == 2:

LabelsColors.append('orange')

if i == 3:

LabelsColors.append('red')

#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5

axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)

#设置标题,x轴label,y轴label

axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)

axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)

axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)

plt.setp(axs0_title_text, size=9, weight='bold', color='red')

plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')

plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')

#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5

axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)

#设置标题,x轴label,y轴label

axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)

axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)

axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)

plt.setp(axs1_title_text, size=9, weight='bold', color='red')

plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')

plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')

#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5

axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)

#设置标题,x轴label,y轴label

axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)

axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)

axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)

plt.setp(axs2_title_text, size=9, weight='bold', color='red')

plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')

plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')

#设置图例

didntLike = mlines.Line2D([], [], color='black', marker='.',

markersize=6, label='didntLike')

smallDoses = mlines.Line2D([], [], color='orange', marker='.',

markersize=6, label='smallDoses')

largeDoses = mlines.Line2D([], [], color='red', marker='.',

markersize=6, label='largeDoses')

#添加图例

axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])

axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])

axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])

#显示图片

plt.show()

"""函数说明:main函数Parameters:无Returns:无Modify:2017-03-24"""

if __name__ == '__main__':

#打开的文件名

filename = "datingTestSet.txt"

#打开并处理数据

datingDataMat, datingLabels = file2matrix(filename)

showdatas(datingDataMat, datingLabels)

运行上述代码,可以看到可视化结果如图2.3所示。图2.3 数据可视化结果

通过数据可以很直观的发现数据的规律,比如以玩游戏所消耗时间占比与每年获得的飞行常客里程数,只考虑这二维的特征信息,给我的感觉就是海伦喜欢有生活质量的男人。为什么这么说呢?每年获得的飞行常客里程数表明,海伦喜欢能享受飞行常客奖励计划的男人,但是不能经常坐飞机,疲于奔波,满世界飞。同时,这个男人也要玩视频游戏,并且占一定时间比例。能到处飞,又能经常玩游戏的男人是什么样的男人?很显然,有生活质量,并且生活悠闲的人。我的分析,仅仅是通过可视化的数据总结的个人看法。我想,每个人的感受应该也是不尽相同。

4、准备数据:数据归一化

表2.1给出了四组样本,如果想要计算样本3和样本4之间的距离,可以使用欧拉公式计算。表2.1 约会网站样本数据

计算方法如图2.4所示。图2.4 计算公式

我们很容易发现,上面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年获取的飞行常客里程数对于计算结果的影响将远远大于表2.1中其他两个特征-玩视频游戏所耗时间占比和每周消费冰淇淋公斤数的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。

在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:

其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。在kNN_test02.py文件中编写名为autoNorm的函数,用该函数自动将数据归一化。代码如下:

# -*- coding: UTF-8 -*-

import numpy as np

"""函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24"""

def file2matrix(filename):

#打开文件

fr = open(filename)

#读取文件所有内容

arrayOLines = fr.readlines()

#得到文件行数

numberOfLines = len(arrayOLines)

#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列

returnMat = np.zeros((numberOfLines,3))

#返回的分类标签向量

classLabelVector = []

#行的索引值

index = 0

for line in arrayOLines:

#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')

line = line.strip()

#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。

listFromLine = line.split('\t')

#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵

returnMat[index,:] = listFromLine[0:3]

#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力

if listFromLine[-1] == 'didntLike':

classLabelVector.append(1)

elif listFromLine[-1] == 'smallDoses':

classLabelVector.append(2)

elif listFromLine[-1] == 'largeDoses':

classLabelVector.append(3)

index += 1

return returnMat, classLabelVector

"""函数说明:对数据进行归一化Parameters:dataSet - 特征矩阵Returns:normDataSet - 归一化后的特征矩阵ranges - 数据范围minVals - 数据最小值Modify:2017-03-24"""

def autoNorm(dataSet):

#获得数据的最小值

minVals = dataSet.min(0)

maxVals = dataSet.max(0)

#最大值和最小值的范围

ranges = maxVals - minVals

#shape(dataSet)返回dataSet的矩阵行列数

normDataSet = np.zeros(np.shape(dataSet))

#返回dataSet的行数

m = dataSet.shape[0]

#原始值减去最小值

normDataSet = dataSet - np.tile(minVals, (m, 1))

#除以最大和最小值的差,得到归一化数据

normDataSet = normDataSet / np.tile(ranges, (m, 1))

#返回归一化数据结果,数据范围,最小值

return normDataSet, ranges, minVals

"""函数说明:main函数Parameters:无Returns:无Modify:2017-03-24"""

if __name__ == '__main__':

#打开的文件名

filename = "datingTestSet.txt"

#打开并处理数据

datingDataMat, datingLabels = file2matrix(filename)

normDataSet, ranges, minVals = autoNorm(datingDataMat)

print(normDataSet)

print(ranges)

print(minVals)

运行上述代码,得到结果如图2.4所示。图2.4 归一化函数运行结果

从图2.4的运行结果可以看到,我们已经顺利将数据归一化了,并且求出了数据的取值范围和数据的最小值,这两个值是在分类的时候需要用到的,直接先求解出来,也算是对数据预处理了。

5、测试算法:验证分类器

机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我么你可以随意选择10%数据而不影响其随机性。

为了测试分类器效果,在kNN_test02.py文件中创建函数datingClassTest,编写代码如下:

# -*- coding: UTF-8 -*-

import numpy as np

import operator

"""函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点Returns:sortedClassCount[0][0] - 分类结果Modify:2017-03-24"""

def classify0(inX, dataSet, labels, k):

#numpy函数shape[0]返回dataSet的行数

dataSetSize = dataSet.shape[0]

#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)

diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet

#二维特征相减后平方

sqDiffMat = diffMat**2

#sum()所有元素相加,sum(0)列相加,sum(1)行相加

sqDistances = sqDiffMat.sum(axis=1)

#开方,计算出距离

distances = sqDistances**0.5

#返回distances中元素从小到大排序后的索引值

sortedDistIndices = distances.argsort()

#定一个记录类别次数的字典

classCount = {}

for i in range(k):

#取出前k个元素的类别

voteIlabel = labels[sortedDistIndices[i]]

#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。

#计算类别次数

classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

#python3中用items()替换python2中的iteritems()

#key=operator.itemgetter(1)根据字典的值进行排序

#key=operator.itemgetter(0)根据字典的键进行排序

#reverse降序排序字典

sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

#返回次数最多的类别,即所要分类的类别

return sortedClassCount[0][0]

"""函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24"""

def file2matrix(filename):

#打开文件

fr = open(filename)

#读取文件所有内容

arrayOLines = fr.readlines()

#得到文件行数

numberOfLines = len(arrayOLines)

#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列

returnMat = np.zeros((numberOfLines,3))

#返回的分类标签向量

classLabelVector = []

#行的索引值

index = 0

for line in arrayOLines:

#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')

line = line.strip()

#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。

listFromLine = line.split('\t')

#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵

returnMat[index,:] = listFromLine[0:3]

#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力

if listFromLine[-1] == 'didntLike':

classLabelVector.append(1)

elif listFromLine[-1] == 'smallDoses':

classLabelVector.append(2)

elif listFromLine[-1] == 'largeDoses':

classLabelVector.append(3)

index += 1

return returnMat, classLabelVector

"""函数说明:对数据进行归一化Parameters:dataSet - 特征矩阵Returns:normDataSet - 归一化后的特征矩阵ranges - 数据范围minVals - 数据最小值Modify:2017-03-24"""

def autoNorm(dataSet):

#获得数据的最小值

minVals = dataSet.min(0)

maxVals = dataSet.max(0)

#最大值和最小值的范围

ranges = maxVals - minVals

#shape(dataSet)返回dataSet的矩阵行列数

normDataSet = np.zeros(np.shape(dataSet))

#返回dataSet的行数

m = dataSet.shape[0]

#原始值减去最小值

normDataSet = dataSet - np.tile(minVals, (m, 1))

#除以最大和最小值的差,得到归一化数据

normDataSet = normDataSet / np.tile(ranges, (m, 1))

#返回归一化数据结果,数据范围,最小值

return normDataSet, ranges, minVals

"""函数说明:分类器测试函数Parameters:无Returns:normDataSet - 归一化后的特征矩阵ranges - 数据范围minVals - 数据最小值Modify:2017-03-24"""

def datingClassTest():

#打开的文件名

filename = "datingTestSet.txt"

#将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中

datingDataMat, datingLabels = file2matrix(filename)

#取所有数据的百分之十

hoRatio = 0.10

#数据归一化,返回归一化后的矩阵,数据范围,数据最小值

normMat, ranges, minVals = autoNorm(datingDataMat)

#获得normMat的行数

m = normMat.shape[0]

#百分之十的测试数据的个数

numTestVecs = int(m * hoRatio)

#分类错误计数

errorCount = 0.0

for i in range(numTestVecs):

#前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集

classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],

datingLabels[numTestVecs:m], 4)

print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))

if classifierResult != datingLabels[i]:

errorCount += 1.0

print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

"""函数说明:main函数Parameters:无Returns:无Modify:2017-03-24"""

if __name__ == '__main__':

datingClassTest()

运行上述代码,得到结果如图2.5所示。图2.5 验证分类器结果

从图2.5验证分类器结果中可以看出,错误率是3%,这是一个想当不错的结果。我们可以改变函数datingClassTest内变量hoRatio和分类器k的值,检测错误率是否随着变量值的变化而增加。依赖于分类算法、数据集和程序设置,分类器的输出结果可能有很大的不同。

6、使用算法:构建完整可用系统

我们可以给海伦一个小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。程序会给出她对男方喜欢程度的预测值。

在kNN_test02.py文件中创建函数classifyPerson,代码如下:

# -*- coding: UTF-8 -*-

import numpy as np

import operator

"""函数说明:kNN算法,分类器Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点Returns:sortedClassCount[0][0] - 分类结果Modify:2017-03-24"""

def classify0(inX, dataSet, labels, k):

#numpy函数shape[0]返回dataSet的行数

dataSetSize = dataSet.shape[0]

#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)

diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet

#二维特征相减后平方

sqDiffMat = diffMat**2

#sum()所有元素相加,sum(0)列相加,sum(1)行相加

sqDistances = sqDiffMat.sum(axis=1)

#开方,计算出距离

distances = sqDistances**0.5

#返回distances中元素从小到大排序后的索引值

sortedDistIndices = distances.argsort()

#定一个记录类别次数的字典

classCount = {}

for i in range(k):

#取出前k个元素的类别

voteIlabel = labels[sortedDistIndices[i]]

#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。

#计算类别次数

classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

#python3中用items()替换python2中的iteritems()

#key=operator.itemgetter(1)根据字典的值进行排序

#key=operator.itemgetter(0)根据字典的键进行排序

#reverse降序排序字典

sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

#返回次数最多的类别,即所要分类的类别

return sortedClassCount[0][0]

"""函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力Parameters:filename - 文件名Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量Modify:2017-03-24"""

def file2matrix(filename):

#打开文件

fr = open(filename)

#读取文件所有内容

arrayOLines = fr.readlines()

#得到文件行数

numberOfLines = len(arrayOLines)

#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列

returnMat = np.zeros((numberOfLines,3))

#返回的分类标签向量

classLabelVector = []

#行的索引值

index = 0

for line in arrayOLines:

#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')

line = line.strip()

#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。

listFromLine = line.split('\t')

#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵

returnMat[index,:] = listFromLine[0:3]

#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力

if listFromLine[-1] == 'didntLike':

classLabelVector.append(1)

elif listFromLine[-1] == 'smallDoses':

classLabelVector.append(2)

elif listFromLine[-1] == 'largeDoses':

classLabelVector.append(3)

index += 1

return returnMat, classLabelVector

"""函数说明:对数据进行归一化Parameters:dataSet - 特征矩阵Returns:normDataSet - 归一化后的特征矩阵ranges - 数据范围minVals - 数据最小值Modify:2017-03-24"""

def autoNorm(dataSet):

#获得数据的最小值

minVals = dataSet.min(0)

maxVals = dataSet.max(0)

#最大值和最小值的范围

ranges = maxVals - minVals

#shape(dataSet)返回dataSet的矩阵行列数

normDataSet = np.zeros(np.shape(dataSet))

#返回dataSet的行数

m = dataSet.shape[0]

#原始值减去最小值

normDataSet = dataSet - np.tile(minVals, (m, 1))

#除以最大和最小值的差,得到归一化数据

normDataSet = normDataSet / np.tile(ranges, (m, 1))

#返回归一化数据结果,数据范围,最小值

return normDataSet, ranges, minVals

"""函数说明:通过输入一个人的三维特征,进行分类输出Parameters:无Returns:无Modify:2017-03-24"""

def classifyPerson():

#输出结果

resultList = ['讨厌','有些喜欢','非常喜欢']

#三维特征用户输入

precentTats = float(input("玩视频游戏所耗时间百分比:"))

ffMiles = float(input("每年获得的飞行常客里程数:"))

iceCream = float(input("每周消费的冰激淋公升数:"))

#打开的文件名

filename = "datingTestSet.txt"

#打开并处理数据

datingDataMat, datingLabels = file2matrix(filename)

#训练集归一化

normMat, ranges, minVals = autoNorm(datingDataMat)

#生成NumPy数组,测试集

inArr = np.array([precentTats, ffMiles, iceCream])

#测试集归一化

norminArr = (inArr - minVals) / ranges

#返回分类结果

classifierResult = classify0(norminArr, normMat, datingLabels, 3)

#打印结果

print("你可能%s这个人" % (resultList[classifierResult-1]))

"""函数说明:main函数Parameters:无Returns:无Modify:2017-03-24"""

if __name__ == '__main__':

classifyPerson()

在cmd中,运行程序,并输入数据(12,44000,0.5),预测结果是"你可能有些喜欢这个人",也就是这个人魅力一般。一共有三个档次:讨厌、有些喜欢、非常喜欢,对应着不喜欢的人、魅力一般的人、极具魅力的人。结果如图2.6所示。图2.6 预测结果

三、k-近邻算法实战之sklearn手写数字识别

1、实战背景

对于需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素x32像素。尽管采用本文格式存储图像不能有效地利用内存空间,但是为了方便理解,我们将图片转换为文本格式,数字的文本格式如图3.1所示。图3.1 数字的文本格式

与此同时,这些文本格式存储的数字的文件命名也很有特点,格式为:数字的值_该数字的样本序号,如图3.2所示。图3.2 文本数字的存储格式

这里不再讲解自己用Python写的k-邻域分类器的方法,因为这不是本小节的重点。接下来,我们将使用强大的第三方Python科学计算库Sklearn构建手写数字系统。

2、sklearn简介

Scikit learn 也简称sklearn,是机器学习领域当中最知名的python模块之一。sklearn包含了很多机器学习的方式:Classification 分类

Regression 回归

Clustering 非监督分类

Dimensionality reduction 数据降维

Model Selection 模型选择

Preprocessing 数据与处理

使用sklearn可以很方便地让我们实现一个机器学习算法。一个复杂度算法的实现,使用sklearn可能只需要调用几行API即可。所以学习sklearn,可以有效减少我们特定任务的实现周期。

3、sklearn安装

在安装sklearn之前,需要安装两个库,即numpy+mkl和scipy。不要使用pip3直接进行安装,因为pip3默安装的是numpy,而不是numpy+mkl。第三方库下载地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/

找到对应python版本的numpy+mkl和scipy,下载安装即可,如图3.3和图3.4所示。图3.3 numpy+mkl图3.4 scipy

使用pip3安装好这两个whl文件后,使用如下指令安装sklearn。

pip3 install -U scikit-learn

4、sklearn实现k-近邻算法简介

sklearn.neighbors模块实现了k-近邻算法,内容如图3.5所示。图3.5 sklearn.neighbors

我们使用sklearn.neighbors.KNeighborsClassifier就可以是实现上小结,我们实现的k-近邻算法。KNeighborsClassifier函数一共有8个参数,如图3.6所示。图3.6 KNeighborsClassifier

KNneighborsClassifier参数说明:n_neighbors:默认为5,就是k-NN的k的值,选取最近的k个点。

weights:默认是uniform,参数可以是uniform、distance,也可以是用户自己定义的函数。uniform是均等的权重,就说所有的邻近点的权重都是相等的。distance是不均等的权重,距离近的点比距离远的点的影响大。用户自定义的函数,接收距离的数组,返回一组维数相同的权重。

algorithm:快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。ball tree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

leaf_size:默认是30,这个是构造的kd树和ball树的大小。这个值的设置会影响树构建的速度和搜索速度,同样也影响着存储树所需的内存大小。需要根据问题的性质选择最优的大小。

metric:用于距离度量,默认度量是minkowski,也就是p=2的欧氏距离(欧几里德度量)。

p:距离度量公式。在上小结,我们使用欧氏距离公式进行距离度量。除此之外,还有其他的度量方法,例如曼哈顿距离。这个参数默认为2,也就是默认使用欧式距离公式进行距离度量。也可以设置为1,使用曼哈顿距离公式进行距离度量。

metric_params:距离公式的其他关键参数,这个可以不管,使用默认的None即可。

n_jobs:并行处理设置。默认为1,临近点搜索并行工作数。如果为-1,那么CPU的所有cores都用于并行工作。

KNeighborsClassifier提供了以一些方法供我们使用,如图3.7所示。图3.5 KNeighborsClassifier的方法

5、sklearn小试牛刀

我们知道数字图片是32x32的二进制图像,为了方便计算,我们可以将32x32的二进制图像转换为1x1024的向量。对于sklearn的KNeighborsClassifier输入可以是矩阵,不用一定转换为向量,不过为了跟自己写的k-近邻算法分类器对应上,这里也做了向量化处理。然后构建kNN分类器,利用分类器做预测。创建kNN_test04.py文件,编写代码如下:

# -*- coding: UTF-8 -*-

import numpy as np

import operator

from os import listdir

from sklearn.neighbors import KNeighborsClassifier as kNN

"""函数说明:将32x32的二进制图像转换为1x1024向量。Parameters:filename - 文件名Returns:returnVect - 返回的二进制图像的1x1024向量Modify:2017-07-15"""

def img2vector(filename):

#创建1x1024零向量

returnVect = np.zeros((1, 1024))

#打开文件

fr = open(filename)

#按行读取

for i in range(32):

#读一行数据

lineStr = fr.readline()

#每一行的前32个元素依次添加到returnVect中

for j in range(32):

returnVect[0, 32*i+j] = int(lineStr[j])

#返回转换后的1x1024向量

return returnVect

"""函数说明:手写数字分类测试Parameters:无Returns:无Modify:2017-07-15"""

def handwritingClassTest():

#测试集的Labels

hwLabels = []

#返回trainingDigits目录下的文件名

trainingFileList = listdir('trainingDigits')

#返回文件夹下文件的个数

m = len(trainingFileList)

#初始化训练的Mat矩阵,测试集

trainingMat = np.zeros((m, 1024))

#从文件名中解析出训练集的类别

for i in range(m):

#获得文件的名字

fileNameStr = trainingFileList[i]

#获得分类的数字

classNumber = int(fileNameStr.split('_')[0])

#将获得的类别添加到hwLabels中

hwLabels.append(classNumber)

#将每一个文件的1x1024数据存储到trainingMat矩阵中

trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr))

#构建kNN分类器

neigh = kNN(n_neighbors = 3, algorithm = 'auto')

#拟合模型, trainingMat为测试矩阵,hwLabels为对应的标签

neigh.fit(trainingMat, hwLabels)

#返回testDigits目录下的文件列表

testFileList = listdir('testDigits')

#错误检测计数

errorCount = 0.0

#测试数据的数量

mTest = len(testFileList)

#从文件中解析出测试集的类别并进行分类测试

for i in range(mTest):

#获得文件的名字

fileNameStr = testFileList[i]

#获得分类的数字

classNumber = int(fileNameStr.split('_')[0])

#获得测试集的1x1024向量,用于训练

vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))

#获得预测结果

# classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)

classifierResult = neigh.predict(vectorUnderTest)

print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber))

if(classifierResult != classNumber):

errorCount += 1.0

print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100))

"""函数说明:main函数Parameters:无Returns:无Modify:2017-07-15"""

if __name__ == '__main__':

handwritingClassTest()

运行上述代码,得到如图3.8所示的结果。图3.8 sklearn运行结果

上述代码使用的algorithm参数是auto,更改algorithm参数为brute,使用暴力搜索,你会发现,运行时间变长了,变为10s+。更改n_neighbors参数,你会发现,不同的值,检测精度也是不同的。自己可以尝试更改这些参数的设置,加深对其函数的理解。

四、总结

1、kNN算法的优缺点

优点简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;

可用于数值型数据和离散型数据;

训练时间复杂度为O(n);无数据输入假定;

对异常值不敏感

缺点计算复杂性高;空间复杂性高;

样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);

一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。

最大的缺点是无法给出数据的内在含义。

2、其他关于algorithm参数kd_tree的原理,可以查看《统计学方法 李航》书中的讲解;

关于距离度量的方法还有切比雪夫距离、马氏距离、巴氏距离等;

下篇文章将讲解决策树,欢迎各位的捧场!

如有问题,请留言。如有错误,还望指正,谢谢!

PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、赞!

参考文献:本文中提到的电影类别分类、约会网站配对效果判定、手写数字识别实例和数据集,均来自于《机器学习实战》的第二章k-近邻算法。

本文的理论部分,参考自《统计学习方法 李航》的第三章k近邻法以及《机器学习实战》的第二章k-近邻算法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值