python高效编程15个利器_Python高效编程技巧

程序员大咖,一个分享编程知识的公众号。跟着站长一起学习,每天都有进步。

文章不涉及代码,不烧脑细胞,人人都可以学习。

工作中经常要处理各种各样的数据,遇到项目赶进度的时候自己写函数容易浪费时间。

Python 中有很多内置函数帮你提高工作效率!

一:根据条件在序列中筛选数据

1.假设有一个数字列表 data, 过滤列表中的负数

使用列表推导式:

result = [i for i in data if i >= 0]

使用 fliter 过滤函数:

result = fliter(lambda x: x>= 0, data)

2.学生的数学分数以字典形式存储,筛选其中分数大于 80 分的同学

d = {x:randint(50, 100) for x in range(1, 21)}

{k: v for k, v in d.items() if v > 80}

二:对字典的键值对进行翻转

使用 zip() 函数zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

>>> s1 = {x: randint(1, 4) for x in sample('abfcdrg', randint(1,5))}

>>> s1

{'b': 1, 'f': 4, 'g': 3, 'r': 1}

>>> d = {k:v for k, v in zip(s1.values(), s1.keys())}

>>> d

{1: 'r', 4: 'f', 3: 'g'}

三. 统计序列中元素出现的频度

1.某随机序列中,找到出现次数最高的3个元素,它们出现的次数是多少?

构造随机序列如下:

data = [randint(0,20) for _ in range(20)]

方法1: 可以使用字典来统计,以列表中的数据为键,以出现的次数为值

from random import randint

def demo():

data = [randint(0, 20) for _ in range(30)]

# 列表中出现数字出现的次数

d = dict.fromkeys(data, 0)

for v in li:

d[v] += 1

return d

方法2:直接使用 collections 模块下面的 Counter 对象

>>> data = [randint(0, 20) for _ in range(30)]

>>> data

[7, 8, 5, 16, 10, 16, 8, 17, 11, 18, 11, 17, 15, 7, 2, 19, 5, 16, 17, 17, 12, 19, 9, 10, 0, 20, 11, 2, 11, 10]

>>> c2 = Counter(data)

>>> c2

Counter({17: 4, 11: 4, 16: 3, 10: 3, 7: 2, 8: 2, 5: 2, 2: 2, 19: 2, 18: 1, 15: 1, 12: 1, 9: 1, 0: 1, 20: 1})

>>> c2[14]

4

>>> c2.most_common(3) # 统计频度出现最高的3个数

[(17, 4), (11, 4), (16, 3)]

2. 对某英文文章单词进行统计,找到出现次数最高的单词以及出现的次数

通过上面的练习,我们知道可以用 Counter 来解决

import re

from collections import Counter

# 统计某个文章中英文单词的词频

with open('test.txt', 'r', encoding='utf-8')as f:

d = f.read()

total = re.split('\W+', d) # 所有的单词列表

result = Counter(total)

print(result.most_common(10))

四.根据字典中值的大小,对字典中的项进行排序

比如班级中学生的数学成绩以字典的形式存储:

{"Lnad": 88, "Jim", 71...}

请按数学成绩从高到底进行排序!

方法1: 利用 zip 将字典转化为元组,再用 sorted 进行排序

>>> data = {x: randint(60, 100) for x in "xyzfafs"}

>>> data

{'x': 73, 'y': 69, 'z': 76, 'f': 61, 'a': 64, 's': 100}

>>> sorted(data)

['a', 'f', 's', 'x', 'y', 'z']

>>> data = sorted(zip(data.values(), data.keys()))

>>> data

[(61, 'f'), (64, 'a'), (69, 'y'), (73, 'x'), (76, 'z'), (100, 's')]

方法2: 利用 sorted 函数的 key 参数

>>> data.items()

>>> dict_items([('x', 64), ('y', 74), ('z', 66), ('f', 62), ('a', 80), ('s', 72)])

>>> sorted(data.items(), key=lambda x: x[1])

[('f', 62), ('x', 64), ('z', 66), ('s', 72), ('y', 74), ('a', 80)]

五. 在多个字典中找到公共键

实际场景:在足球联赛中,统计每轮比赛都有进球的球员第一轮: {"C罗": 1, "苏亚雷斯":2, "托雷斯": 1..}第二轮: {"内马尔": 1, "梅西":2, "姆巴佩": 3..}第三轮: {"姆巴佩": 2, "C罗":2, "内马尔": 1..}

模拟随机的进球球员和进球数

>>> s1 = {x: randint(1, 4) for x in sample('abfcdrg', randint(1,5))}

>>> s1

{'d': 3, 'g': 2}

>>> s2 = {x: randint(1, 4) for x in sample('abfcdrg', randint(1,5))}

>>> s2

{'b': 4, 'g': 1, 'f': 1, 'r': 4, 'd': 3}

>>> s3 = {x: randint(1, 4) for x in sample('abfcdrg', randint(1,5))}

>>> s3

{'b': 4, 'r': 4, 'a': 2, 'g': 3, 'c': 4}

首先获取字典的 keys,然后取每轮比赛 key 的交集。由于比赛轮次数是不定的,所以使用 map 来批量操作

map(dict.keys, [s1, s2, s3])

然后一直累积取其交集,使用 reduce 函数

reduce(lambda x,y: x & y, map(dict.keys, [s1, s2, s3]))

一行代码搞定!

小编公众号;程序员大咖(CodePush)回复知乎还有资源共享哦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值