transpose ,reshape 在数据处理中是经常用到的两个操作,并且在高维度的时候很容易想不明白到底转换之后的数据是怎么样的,这里我总结下,仔细想想的话应该可以把这两个概念真正弄清楚。
transpose
它是矩阵的转置,在二维的时候很容易想明白转置之后的情况,但是高维度的时候就糊涂了,我们可以非常简单的通过单个数据的位置来理解,每个元素根据矩阵的索引会有一个位置,转置之后元素的位置会变成新的位置,比如一个元素开始的位置是 (1,5) ,转置之后就是(5,1)了,又或者之前的位置是(1,1,0,6) 转置的参数设置为(1,2,3,0)之后,该元素的位置变为 (1,0,6,1),矩阵整体的shape也会相应变化,假如之前是(2,2,7,7), 转置之后就是(2,7,7,2);
reshape
它的含义说的最清楚的一段话:
You can think of reshaping as first raveling the array (using the given
index order), then inserting the elements from the raveled array into the
new array using the same kind of index ordering as was used for the
raveling.
翻译过来就是先打散,再按照这个顺序插入
C 是按照行顺序, F 是按照列顺序,A 就是按照数据在内存中存储的顺序来。
比如:
a = array([[0, 1],
[2, 3],
[4, 5]])
np.reshape(a, (2, 3), order='F')
Out[9]:
array([[0, 4, 3],
[2, 1, 5]])
按照 F 顺序打散后就是 0 2 4 1 3 5, 再按照 F顺序插入, 就是结果。
但是有个地方在多维数据的时候容易混淆,就是当我们按照 C 是按照行顺序, F 是按照列顺序去理解的时候多维度数据的时候,这样的解释就不够了,更一般的理解,应该是 C 顺序准确的含义是从最里面的轴开始读写,而F顺序则是从最外面的轴开始读写;
'C' means to read / write the elements using C-like index order, with the last axis
index changing fastest, back to the first axis index changing slowest.
'F' means to read / write the elements using Fortran-like index order,
with the first index changing fastest, and the last index changing
slowest.
什么意思呢? 以上面的二维数据 a(3,2) 举例就是,C顺序就是先读写最里面 2 这个轴的数据,也就是得到 0 ,1 ,2,3,4,5 这样的顺序,而F顺序则是从最外层 3 这个轴的数据开始读写,得到 0 2 4 1 3 5,多维数据以此类推。