wmm开启和关闭的区别_【解读】排烟风机应由哪些排烟防火阀连锁关闭

本文解析了《建筑防烟排烟系统技术标准》及《汽车库、修车库、停车场设计防火规范》中的关键规定,包括排烟防火阀的设置位置、排烟风机的控制方式及其连锁关闭条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

87f20407fefec16b9a9e27742286774a.gif

edb0d0bb33f3a2f5af90a739bbf9fba5.png

一、《建筑防烟排烟系统技术标准》GB51251-2017

4.4.10 排烟管道下列部位应设置排烟防火阀:     1 垂直风管与每层水平风管交接处的水平管段上;     2 一个排烟系统负担多个防烟分区的排烟支管上;     3 排烟风机入口处;     4 穿越防火分区处。

【解读】“排烟防火阀共有以上四种设置部位。

二、《建筑防烟排烟系统技术标准》GB51251-2017

5.2.2 排烟风机、补风机的控制方式应符合下列规定:
    1 现场手动启动;
    2 火灾自动报警系统自动启动;
    3 消防控制室手动启动;
    4 系统中任一排烟阀或排烟口开启时,排烟风机、补风机自动启动;5 排烟防火阀在280℃时应自行关闭,并应连锁关闭排烟风机和补风机。

【解读】此处的“排烟防火阀”通常认为是 排烟风机入口处 的排烟防火阀。 三、《汽车库、修车库、停车场设计防火规范》GB50067-2014 8.2.8 在穿过不同防烟分区的排烟支管上应设置烟气温度大于280℃时能自动关闭的排烟防火阀,排烟防火阀应联锁关闭相应的排烟风机。 【解读】 1、 此处的“ 排烟防火阀 ”是指 一个排烟系统负担多个防烟分区的排烟支管上 的排烟防火阀 。

2、综合起来说,对于车库而言,下“图一”中任何一个排烟防火阀在280℃时应能自行关闭,并应连锁关闭排烟风机。

a5b5d062c5a5b60a9c0e9880451508d9.png

图一 四、结论:

对于车库与非车库机械排烟系统,应由哪些排烟防火阀连锁关闭排烟风机,是有较大区别的。

959b09eda60ad77cb68f5af07c14200b.gif

有一种安全,叫关注消防安全驿站。

3edeec553adad25a95dd7fa33ac89b81.png

### BERT Whole Word Masking (WWM) 模型实现与使用 BERT Whole Word Masking (WMM) 是一种改进版的预训练方法,旨在通过掩码整个词而不是单个子词来提高模型的效果。这种方法可以更好地捕捉词语级别的语义信息,从而提升下游任务的表现。 #### 什么是Whole Word Masking? 传统的BERT模型采用的是WordPiece分词方式,在这种情况下,一个完整的单词可能会被拆分为多个子词片段。例如,“playing”可能被分解为“play”“##ing”。在原始的BERT中,这些子词中的任何一个都可能被单独遮盖(mask),这可能导致上下文中丢失部分重要的语义信息[^1]。而Whole Word Masking则会一次性屏蔽掉属于同一个单词的所有子词单元,这样能够更有效地学习到整词级的信息表示。 #### 如何实现BERT WWM? 要实现BERT WWM版本,主要涉及以下几个方面: 1. **数据准备阶段** 修改原有的随机替换策略,使得当某个token被选中进行Mask操作时,其对的完整word的所有sub-tokens都会一起被标记为[MASK] token。具体来说就是在构建输入序列之前先确定哪些words该被掩盖然后再转换成相的tokens形式。 2. **代码调整实例** 以下是基于HuggingFace Transformers库的一个简单示例展示如何加载并用BERT-WWM: ```python from transformers import BertTokenizer, BertForMaskedLM tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForMaskedLM.from_pretrained("hfl/chinese-bert-wwm-ext") text = "北京是中国的首都" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) prediction_logits = outputs.logits predicted_token_ids = prediction_logits.argmax(-1).squeeze(0) decoded_text = tokenizer.decode(predicted_token_ids) print(decoded_text) ``` 此段脚本展示了怎样利用已经预先训练好的中文BERT-WWM扩展模型来进行预测工作流程。 3. **微调过程注意事项** 对于特定领域或者特殊用途的数据集上进一步优化该预训练模型参数的过程称为Fine-Tuning。在这个过程中需要注意保持原有结构不变的同时针对目标任务做适当修改比如增加分类头层等等。 #### 使用场景分析 由于增强了对整体词汇的理解能力,因此特别适合用于那些高度依赖于精确理解自然语言含义的任务当中去,像机器翻译、问答系统以及情感分析等领域均能受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值