react 递归遍历四层树结构 遍历分支中的最后一个节点_C++ 智能指针和二叉树:图解层序遍历和逐层打印二叉树...

作者:apocelipes 

链接:https://www.cnblogs.com/apocelipes/p/10758692.html

二叉树是极为常见的数据结构,关于如何遍历其中元素的文章更是数不胜数。

然而大多数文章都是讲解的前序/中序/后序遍历,有关逐层打印元素的文章并不多,已有文章的讲解也较为晦涩读起来不得要领。本文将用形象的图片加上清晰的代码帮助你理解层序遍历的实现,同时我们使用现代c++提供的智能指针来简化树形数据结构的资源管理。

那么现在让我们进入正题。

使用智能指针构建二叉树

我们这里所要实现的是一个简单地模拟了二叉搜索树的二叉树,提供符合二叉搜索树的要求的插入功能个中序遍历。同时我们使用shared_ptr来管理资源。

现在我们只实现insert和ldr两个方法,其余方法的实现并不是本文所关心的内容,不过我们会在后续的文章中逐个介绍:

public std::enable_shared_from_this

我们的node对象继承自enable_shared_from_this,通常这不是必须的,但是为了在层序遍历时方便操作,我们需要从this构造智能指针,因此这步是必须的。insert会将比root小的元素插入左子树,比root大的插入到右子树;ldr则是最为常规的中序遍历,这里实现它是为了以常规方式查看tree中的所有元素。

值得注意的是,对于node节点我们最好使用make_shared进行创建,而不是将其初始化为全局/局部对象,否则在层序遍历时会因为shared_ptr的析构进而导致对象被销毁,从而引发未定义行为。

现在假设我们有一组数据:[3, 1, 0, 2, 5, 4, 6, 7],将第一个元素作为root,将所有数据插入我们的树中会得到如下的一棵二叉树:

auto root = std::make_shared(3);
root->insert(1);
root->insert(0);
root->insert(2);
root->insert(5);
root->insert(4);
root->insert(6);
root->insert(7);可以看到节点一共分成了四层,现在我们需要逐层打印,该怎么做呢?

5beb7caf5d8c06b8c89bb2c99bc0cbfb.png

层序遍历

其实思路很简单,我们采用广度优先的思路,先将节点的孩子都打印,然后再去打印子节点的孩子。

以上图为例,我们先打印根节点的值3,然后我们再打印它的所有子节点的值,是1和5,然后是左右子节点的子节点,以此类推。。。。。。

说起来很简单,但是代码写起来却会遇到麻烦。我们不能简单得像中序遍历时那样使用递归来解决问题(事实上可以用改进的递归算法),因为它会直接来到叶子节点处,这不是我们想要的结果。不过不要紧,我们可以借助于队列,把子节点队列添加到队列末尾,然后从队列开头也就是根节点处遍历,将其子节点添加进队列,随后再对第二个节点做同样的操作,遇到一行结束的地方,我们使用nullptr做标记。

先看具体的代码:

std::vector<std::shared_ptr>
BinaryTreeNode::layer_contents()
{std::vector<std::shared_ptr> nodes;// 先添加根节点,根节点自己就会占用一行输出,所以添加了作为行分隔符的nullptr// 因为需要保存this,所以这是我们需要继承enable_shared_from_this是理由// 同样是因为这里,当返回的结果容器析构时this的智能指针也会析构// 如果我们使用了局部变量则this的引用计数从1减至0,导致对象被销毁,而使用了make_shared创建的对象引用计数是从2到1,没有问题
    nodes.push_back(shared_from_this());
    nodes.push_back(nullptr);// 我们使用index而不是迭代器,是因为添加元素时很可能发生迭代器失效,处理这一问题将会耗费大量精力,而index则无此烦恼for (int index = 0; index         if (!nodes[index]) {// 子节点打印完成或已经遍历到队列末尾if (index == nodes.size()-1) {break;
            }
            nodes.push_back(nullptr); // 添加分隔符continue;
        }if (nodes[index]->left) { // 将当前节点的子节点都添加进队列
            nodes.push_back(nodes[index]->left);
        }if (nodes[index]->right) {
            nodes.push_back(nodes[index]->right);
        }
    }return nodes;
}

代码本身并不复杂,重要的是其背后的思想。

算法图解

如果你第一遍并没有读懂这段代码也不要紧,下面我们有请图解上线:

首先是循环开始时的状态,第一行的内容已经确定了(^代表空指针):

3e2f87a92c6a4fd30051bda09d21819b.png

然后我们从首元素开始遍历,第一个遍历到的是root,他有两个孩子,值分别是1和5:

de5082e9d3a44d6e7fd92e9b46a52286.png

接着索引值+1,这次遍历到的是nullptr,因为不是在队列末尾,所以我们简单添加一个nullptr在队列末尾,这样第二行的节点就都在队列中了:

bc0c14bda864960fa7eb8db59f3207ed.png

随后我们开始遍历第二行的节点,将它们的子节点作为第三行的内容放入队列,最后加上一个行分隔符,以此类推:

f548d30e4ffa6f64c1555df3fa6fd2bd.png

简单来说,就是通过队列来缓存上一行的所有节点,然后再根据上一行的缓存得到下一行的所有节点,循环往复直到二叉树的最后一层。当然不只是二叉树,其他多叉树的层序遍历也可以用类似的思想实现。

好了,知道了如何获取每一行的内容,我们就能逐行处理节点了:

void BinaryTreeNode::layer_print()

如你所见,这个方法足够简单,我们把节点信息保存在额外的容器中是为了方便做进一步的处理,如果只是打印的话大可不必这么麻烦,不过简单通常是有代价的。对于我们的实现来说,分隔符的存在简化了我们对层级之间的区分,然而这样会导致浪费至少log2(n)+1个vector的存储空间,某些情况下可能引起性能问题,而且通过合理得使用计数变量可以避免这些额外的空间浪费。当然具体的实现读者可以自己挑战一下,原理和我们上面介绍的是类似的因此就不在赘述了,也可以参考园内其他的博客文章。

测试

最后让我们看看完整的测试程序,记住要用make_shared创建root实例:

int main()
{
    auto root = std::make_shared(3);
    root->insert(1);
    root->insert(0);
    root->insert(2);
    root->insert(5);
    root->insert(4);
    root->insert(6);
    root->insert(7);
    root->ldr();
    std::cout <"\n";
    root->layer_print();
}

输出:

3eb7bc98ee675314c7f4396d932a4e54.png

可以看到上半部分是中序遍历的结果,下半部分是层序遍历的输出,而且是逐行打印的,不过我们没有做缩进。所以不太美观。

另外你可能已经发现了,我们没有写任何有关资源释放的代码,没错,这就是智能指针的威力,只要注意资源的创建,剩下的事都可以放心得交给智能指针处理,我们可以把更多的精力集中在算法和功能的实现上。

智能指针和层序遍历的内容到这里就结束了,在下一篇文章中我们还将看到智能指针和二叉树的更多操作。


●编号492,输入编号直达本文

●输入m获取文章目录

C语言与C++编程

43cc01895d7786a2b35722abcdcaff97.png

分享C/C++技术文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值