Python pass详细介绍及实例代码
Python pass的用法:
空语句 do nothing
保证格式完整
保证语义完整
以if语句为例,在c或c++/Java中:
if(true)
; //do nothing
else
{
//do something
}
对应于Python就要这样写:
if true:
pass #do nothing
else:
#do something
1 pass语句在函数中的作用
当你在编写一个程序时,执行语句部分思路还没有完成,这时你可以用pass语句来占位,也可以当做是一个标记,是要过后来完成的代码。比如下面这样:
def iplaypython():
pass
定义一个函数iplaypython,但函数体部分暂时还没有完成,又不能空着不写内容,因此可以用pass来替代占个位置。
2 pass语句在循环中的作用
pass也常用于为复合语句编写一个空的主体,比如说你想一个while语句的无限循环,每次迭代时不需要任何操作,你可以这样写:
while True:
pass
以上只是举个例子,现实中最好不要写这样的代码,因为执行代码块为pass也就是空什么也不做,这时python会进入死循环。
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
时间: 2016-11-21
之前我的博客写了python读取windows chrome Cookies,沿着同样的思路,这次本来想尝试读取安卓chrome Cookies, 但是可能是chrome的sqlite3版本比较高失败了,so改成读取lastpass 的Cookies. 背景介绍: qpython3 是一个基于sl4a实现的能让python3跑在安卓手机上集成环境. lastpass 是一个密码管理器,安卓版lastpass 内置了一个web浏览器.经分析lastpass的Cookies的表名,字段名与chrom
本文实例讲述了python中pass语句用法.分享给大家供大家参考.具体分析如下: 1.空语句 do nothing 2.保证格式完整 3.保证语义完整 4.以if语句为例: C/C++中写法: if(true) ; // do nothing else {} // do nothing python中写法: if true: pass # do nothing else: print "do something." 测试程序:定义一个空函数 >>> def null
前面我讲解了如何将树莓派(Raspberry Pi)打造成无线路由,感觉每次通过命令ssh管理显麻烦,于是自己动手编写Web界面,主要是使用Python编写的CGI程序,这里用到了mini_httpd这款轻量的Web服务器,本来想装nginx的,但是想想还是精简一些吧,毕竟资源有限,况且Web管理界面仅我一个人访问. CGI应用跑起来了,但问题来了,如何实现普通路由的那种打开页面就弹出输入用户名密码的对话框? 这里主要用到HTTP协议的一个知识,那就是HTTP基本认证. 服务器端通过发送类似下面
Python pass是空语句,pass语句什么也不做,一般作为占位符或者创建占位程序,是为了保持程序结构的完整性,pass语句不会执行任何操作,比如: Python 语言 pass 语句语法格式如下: 复制代码 代码如下: pass 复制代码 代码如下: 实例: 复制代码 代码如下: #!/usr/bin/python for letter in 'Python': if letter == 'h': pass print 'This is pass block'
Python pass语句使用当语句要求不希望任何命令或代码来执行. pass语句是一个空(null)操作;在执行时没有任何反应.pass也是代码最终会是有用的,但暂时不用写出来(例如,在存根为例): 语法 Python pass语句语法如下: pass 例子 #!/usr/bin/python for letter in 'Python': if letter == 'h': pass print 'This is pass block' print 'Current Letter :', l
翻译自StackOverflow中一个关于Python异常处理的问答. 问题:为什么"except:pass"是一个不好的编程习惯? 我时常在StackOverflow上看到有人评论关于except: pass的使用,他们都提到这是一个不好的Python编程习惯,应该避免.可我想知道为什么?有时候我并不在意出现的错误,而是只想让我的程序继续进行下去.就像这样: try: something except: pass 为什么这么使用except:pass不好?这背后的原因是什么,是不是因
本文实例讲述了Python异常处理操作.分享给大家供大家参考,具体如下: 一.异常处理的引入 >>>whileTrue: try: x = int(input("Please enter a number: ")) break exceptValueError: print("Oops! That was no valid number. Try again ") Please enter a number: y Oops!That was no
因为有把python程序打包成exe的需求,所以,有了如下的代码 import time class LoopOver(Exception): def __init__(self, *args, **kwargs): pass class Spider: def __init__(self): super().__init__() def run(self): raise LoopOver @property def time(self): return '总共用时:{}秒'.format(se
Python 异常处理的实例详解 与许多面向对象语言一样,Python 具有异常处理,通过使用 try...except 块来实现. Note: Python v s. Java 的异常处理 Python 使用 try...except 来处理异常,使用 raise 来引发异常.Java 和 C++ 使用 try...catch 来处理异常,使用 throw 来引发异常. 异常在 Python 中无处不在:实际上在标准 Python 库中的每个模块都使用了它们,并且 Python 自已会在许多不
所谓异常指的是程序的执行出现了非预期行为,就好比现实中的做一件事过程中总会出现一些意外的事.异常的处理是跨越编程语言的,和具体的编程细节相比,程序执行异常的处理更像是哲学.限于认知能力和经验所限,不可能达到像解释器下import this看到的python设计之禅一样,本文就结合实际使用简单的聊一聊. 0. 前言 工作中,程序员之间一言不合就亮代码,毕竟不管是代码本身还是其执行过程,不会存在二义性,更不会含糊不清,代码可谓是程序员之间的官方语言.但是其处理问题的逻辑或者算法则并非如此. 让我至今
今天,总结一下最近编程使用的python异常处理和日志处理的感受,其实异常处理是程序编写时非常重要的一块,但是我一开始学的语言是C++,这门语言中没有强制要求使用try...catch语句,因此我通常编写代码的时候忽略了这一块,直到开始学习java的时候,发现好多时候编写代码必须加上try...catch 模块,然而我每次都不深入理解,仅仅使用eclipse自动补全功能加上try...catch模块,或者直接在类上加入throws Exception最省事,完全不用思考. 最近在编写python
这篇文章主要介绍了python异常处理try except过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 某些时候我们能够预判程序可能会出现何种类型的错误,而此时我们希望程序继续执行而不是退出,此时就需要用到异常处理:下面是常用的几种异常处理方法 #通过实例属性 列表 字典构造对应的异常 class Human(object): def __init__(self, name, age, sex): self.name = name s
本文实例讲述了python异常处理.自定义异常.断言原理与用法.分享给大家供大家参考,具体如下: 什么是异常: 当程序遭遇某些非正常问题的时候就会抛出异常:比如int()只能处理能转化成int的对象,如果传入一个不能转化的对象就会报错并抛出异常 常用的异常有: ValueError :传入无效的错误的参数 TypeError:进行了对类型无效的操作 IndexError:序列中没有此索引 NameError:使用未定义的变量 更多更具体的异常可以参考Python官方文档,读读官方文档更健康 异常
爬虫是大家公认的入门Python最好方式,没有之一.虽然Python有很多应用的方向,但爬虫对于新手小白而言更友好,原理也更简单,几行代码就能实现基本的爬虫,零基础也能快速入门,让新手小白体会更大的成就感.因此小编整理了新手小白必看的Python爬虫学习路线全面指导,希望可以帮到大家. 1.学习 Python 包并实现基本的爬虫过程 大部分爬虫都是按"发送请求--获得页面--解析页面--抽取并储存内容"这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程.Python中
1. 优化代码和算法 一定要先好好看看你的代码和算法.许多速度问题可以通过实现更好的算法或添加缓存来解决.本文所述都是关于这一主题的,但要遵循的一些一般指导方针是: 测量,不要猜测. 测量代码中哪些部分运行时间最长,先把重点放在那些部分上. 实现缓存. 如果你从磁盘.网络和数据库执行多次重复的查找,这可能是一个很大的优化之处. 重用对象,而不是在每次迭代中创建一个新对象.Python 必须清理你创建的每个对象才能释放内存,这就是所谓的"垃圾回收".许多未使用对象的垃圾回收会大大降低软件