python 求两条曲线的交点_三个视频搞定:双曲线的焦点三角形、第二定义及其运用、切线方程、直线与双曲线交点、弦长通径特殊双曲线...

本文适合高二、高三学生,通过视频和文字介绍双曲线的几何特性,包括中点弦斜率、焦点三角形、第二定义,并详细讨论直线与双曲线的交点个数,涉及代数法和几何法。同时涵盖弦长公式、通径、等轴双曲线等概念,是数学学习的实用参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9b50440fc1b6eaf41a158634f3d658e3.png

● 本文适合高二上学期、高三一轮复习的同学阅读。先看视频再看文字,看视频时注意利用暂停,想清楚每一步变形的依据。

01

双曲线中点弦斜率、焦点三角形、第二定义

视频讲解

1、双曲线中点弦斜率结论

eb5cee3e1e3a9972681cb71fcfb57f86.png

2、双曲线焦点三角形相关结论

7dadac44cf6eb457e43192fc683e72d4.png 3085d2b0a4659a3afa6808f37a81d8c6.png

3、双曲线的第二定义

平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为x=±a²/c(焦点在x轴上)或y=±a²/c(焦点在y轴上)。

6bf7e3b02dc483cbcdaa3e7a43aa568f.png e5e09836b317bc159b711addc17dec95.png 9a13ebb566c6beeec85500d718f46db0.png

02

直线与双曲线的交点

视频讲解

4、直线与双曲线的交点个数讨论

2a37bd744695ef8e8f97ecad648556f4.png

(1)代数法:联立双曲线与直线的方程组成二次方程组。解得有几组解就有几个交点。

05b1a2c8e470149a2c550015ec3be437.png

(2)几何法:以焦点在X轴上的双曲线为例,

渐近线与双曲线没有公共点,平行于渐近线的直线与双曲线有一个公共点。

过原点与渐近线相交、斜率存在且不为0的直线和双曲线有0个或2个交点。

斜率为0的直线与双曲线有2个公共点。

垂直于X轴的直线与双曲线有0个、1个或2个公共点。

5、弦长公式

3b87d9645c4ac205a61f673ec9785b92.png 40f3c763263c77e3c24ee360b2a4931c.png f46a9f870abe3780b3cd8f9ce7ab243d.png 1f5a3e59bcfd70c037d1452da14c7307.png a64c51a789e57a8daf40389427de7ad6.png 9a13ebb566c6beeec85500d718f46db0.png

03

双曲线相关和识小结

视频讲解

6、双曲线通径、焦点三角形、弦长公式、切线方程

双曲线的通径:过焦点,垂直于实轴的弦即通径,通径有两条,长为2b²/a。

01877d4e190fcfe1d0c95664336cc33e.png

7、等轴双曲线、共轭双曲线、共渐近线双曲线

3edc566f243086f3ff267dd934433abf.png

等轴双曲线:一种特殊的双曲线,特点是渐近线互相垂直,半实轴长与半虚轴长相等。

共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,也可以看做把双曲线方程中的正负号交换了位置后得到的新双曲线方程,这两种方程的双曲线通常称它们互为共轭双曲线。

e59ccb6abc43a1373852599d199de23e.png f3643cebe51cf0a335914cfd5923de55.png 8c82433fb9d8fdee00170ee5f0977ad8.png

渐近线:如果双曲线上的一点沿着双曲线趋于无穷远时,该点与某条直线的距离趋于零,则称此条直线为双曲线的渐近线。

(本文部分图片与视频来自于网络,仅供学习交流用,若有不妥,请联系删除。)

9a13ebb566c6beeec85500d718f46db0.png

人生有缘才相遇 扫码相识更有趣

cc57000f801d6cda3e098edc5b60be10.png

微信号 :rong19711107 

公众号:周老师松果数学

● 扫码联系我

zlssgsx

7fbf69f1350acc7f3afe62963aa585ec.gif 7fbf69f1350acc7f3afe62963aa585ec.gif 7fbf69f1350acc7f3afe62963aa585ec.gif b4405fa36640ec308ebd7b7d39197bdd.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值