java中履约记录表的实现_工程建设项目标后履约情况记录表

本文提供了一份详细的工程建设项目标后履约情况记录表,包括履约记录、评价表及管理人员变更备案等内容,旨在确保工程项目按合同约定顺利进行。

41528d3028836879cd698677c3999917.gif工程建设项目标后履约情况记录表

工程建设项目标后履约情况记录表 建设单位名称(盖章) 工程项目名称 项目(标段)名称 开 工 日 期 施工许可证号 填 表 日 期 履约情况记录 内 容 主要管理人员是否在现场 是否与合同 约定一致 现场管理人员情况 施工 单位 单位名称 项目负责人 项目管理班子 监理 单位 单位名称 项目总监 项目管理班子 现场施工情况 1.工程形象进度是否符合合同约定。 2.工程质量是否满足相关规范要求。 3.工程安全保证措施是否满足法律法规及相关规定。 4.是否有转包、违法分包、挂靠承包或转让监理业务等行为。 其他 建设单位分管负责人: 签字: 年 月 日 监理单位项目负责人: 签字: 年 月 日 施工单位项目负责人: 签字: 年 月 日 备注:此表一式三份,由建设单位填写,经建设单位分管负责人、监理单位、施工单位项目负责人签字确认后,报县公管办加盖备案专用章,一份公管办留存,一份建设单位存档,一份在工程审计决算时报审计部门。 建设单位对施工单位标后履约情况评价表 年 月 日 建设单位名称(盖章) 工程项目名称 项目(标段)名称 开 工 日 期 施工许可证号 填 表 日 期 施工单位名称 评 价 内 容 得分 现场管理人员情况 1.项目部人员是否符合合同约定,并到岗到位(10分) 2.项目部人员综合管理水平、职业道德、业务水平和管理能力(20分) 3.项目部人员应对、处理突发事件的能力和水平(10分) 现场施工情况 1.工程形象进度是否与合同约定保持一致(10分) 2.工程质量是否满足相关规范要求(15分) 3.工程安全保证措施是否满足法律法规及相关规定(15分) 4.施工现场环境保护措施等是否满足相关规定(10分) 5.资料、档案是否完整(10分) 综 合 得 分 综合评价 满意度 □满意 □基本满意 □不满意 备 注 备注:1.此表一式三份,由建设单位填写,报县公管办加盖备案专用章后,一份公管 办留存,一份建设单位存档,一份在工程审计决算时报审计部门。 2.综合评价分优、良、中、差四个等次,按综合得分进行评价(优:90-100, 良:80-89,中:70-79,差:60-69)。 建设单位对监理单位标后履约情况评价表 年 月 日 建设单位名称(盖章) 工程项目名称 项目(标段)名称 开 工 日 期 施工许可证号 填 表 日 期 监理单位名称 评 价 内 容 得分 现场管理人员情况 1.项目部人员是否符合合同约定,并到岗到位(10分) 2.项目部人员综合管理水平、职业道德、业务水平和管理能力(20分) 3.项目部人员应对、处理突发事件的能力和水平(10分) 现场施工情况 1.工程形象进度是否与合同约定保持一致(10分) 2.工程质量是否满足相关规范要求(15分) 3.工程安全保证措施是否满足法律法规及相关规定(15分) 4.施工现场环境保护措施等是否满足相关规定(10分) 5.资料、档案是否完整(10分) 综 合 得 分 综合评价 满意度 □满意 □基本满意 □不满意 备 注 备注:1.此表一式三份,由建设单位填写,报县公管办加盖备案专用章后,一份公管 办留存,一份建设单位存档,一份在工程审计决算时报审计部门。 2.综合评价分优、良、中、差四个等次,按综合得分进行评价(优:90-100, 良:80-89,中:70-79,差:60-69)。 项目部管理人员变更情况备案表 申请单位(盖章): 工程项目名称 工程地点 建设规模 项目工期起止时间 变更岗位 变更情况 变更原因 项 目 班 子 变 更 变更前项目负责人 (项目总监) 姓名: 资格证号: 专业: 变更前管理人员 基本信息 姓名: 资格证号: 专业: 岗 位: 姓名: 资格证号: 专业: 岗 位: 姓名: 资格证号: 专业: 岗 位: 变更后项目负责人 (项目总监) 姓名: 资格证号: 专业: 变更后管理人员 基本信息 姓名: 资格证号: 专业: 岗 位: 姓名: 资格证号: 专业: 岗 位: 姓名: 资格证号: 专业: 岗 位: 建设单位意见 (盖 章) 年 月 日 县公管办意见 (盖 章) 年 月 日 备 注 备注:此表一式三份,由申请单位填写,经建设单位、县公管办审批同意后,一份报建设单位,一份报县公管办,一份存档。

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值