最近,我开始进行股票价格分析,以优化我的投资组合。我从一个Excel文件和几个VBA宏开始。它工作得很好,但是非常慢。因此,我现在正尝试在服务器上建立并建立适当的“股票价格”数据库(基于此帖子)。
在“ stock_prices”数据库中,有一个“ daily_price”表,用于存储某些行情的每日股票价格。为了更新“每日价格”表,每天都会启动python脚本,其中包括以下Python / SQL语句。
df = pdr.get_data_yahoo(ticker, start_date)
for row in df.itertuples():
values = [YAHOO_VENDOR_ID, ticker_index[ticker]] + list(row)
cursor.execute("INSERT INTO daily_price (data_vendor_id, ticker_id, price_date, open_price, high_price, low_price, close_price, adj_close_price, volume) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)", tuple(values))
不幸的是,“ cursor.execute ...”行返回以下错误:“ AttributeError:“ Timestamp”对象没有属性“ translate””
“值”元组的打印输出是:[1、2,时间戳('2004-08-19 00:00:00'),49.81328582763672、51.83570861816406、47.80083084106445、49.9826545715332、49.9826545715332、44871300]
根据我在另一篇类似的文章中可以读到的内容,我检查了日期索引的类型以确保它不是对象:
Print(df.index.dtype)
这将返回看起来不错的“ datetime64 [ns]”。
最后,在数据库中,我尝试将数据类型从“日期”更改为“日期时间”,但这不能解决错误。
任何人都可以分享一些有关如何解决此错误的提示吗?
最好的祝福,
于25/04/2020编辑:最终解决方案
df = pdr.get_data_yahoo(ticker, start_date)
df = df.reset_index()
df.columns = ['price_date', 'open_price', 'high_price', 'low_price', 'close_price', 'adj_close_price', 'volume']
df['data_vendor_id'] = YAHOO_VENDOR_ID
df['ticker_id'] = ticker_index[ticker]
df = df[['data_vendor_id','ticker_id','price_date', 'open_price', 'high_price', 'low_price', 'close_price', 'adj_close_price', 'volume']]
df['price_date'] = df['price_date'].dt.strftime('%Y-%m-%d %H:%M:%S')
print(df)
cursor.executemany("INSERT INTO daily_price (data_vendor_id, ticker_id, price_date, open_price, high_price, low_price, close_price, adj_close_price, volume) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)", df.to_numpy().tolist())
解决方案
考虑将您的日期时间列转换为时间的字符串表示形式,并使用DataFrame.to_numpy()而不是iterrows方法:
df = pdr.get_data_yahoo(ticker, start_date)
# ADD NEW COLUMNS
df["data_vendor_id"] = YAHOO_VENDOR_ID
df["ticker_id"] = ticker_index[ticker]]
# CONVERT DATE TO STRING TIME
df["DATE"] = df["DATE"].dt.strftime('%Y-%m-%d %H:%M:%S')
sql = '''INSERT INTO daily_price (data_vendor_id, ticker_id, price_date,
open_price, high_price, low_price,
close_price, adj_close_price, volume)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)
'''
# LIST
cursor.executemany(sql, df.to_numpy().tolist())
conn.commit()