pandas series取值_数据分析pandas的简单操作

本文介绍了为何使用Pandas,包括其处理多种数据类型的能力和数据读取功能。重点讲解了Series和DataFrame的基本操作,如Series的创建、切片、索引和标签类型,以及DataFrame的行、列索引。此外,还讨论了iloc和loc用于DataFrame取值的方法,以及如何处理缺失值,包括删除和填充。最后提到了Pandas的统计方法和字符串处理功能。
摘要由CSDN通过智能技术生成

为什么要用pandas呢?

166988c2ca29eaa8782d8a2728152940.png

numpy能够帮我们处理数值的数据,pandas除了处理数值以外还可以处理字符串,时间序列等数据类型;

正常我们还是主要用pandas来读取数据;以下是读取不同类型的文件:

pd.read_csv()
pd.read_excel()
pd.read_html()
pd.read_hdf()

读取数据后,我们说一下pd对数据的一些处理;

1.pandas的常用数据类型

series 一维,带标签的数组;

dataframe 二维,seiries的容器;

2.series

我们用一个字典来作为series创建data对象的内容;字典的键就作为series的索引了;

import pandas as pd
import string
dic={string.ascii_uppercase[i]:i for i in range(1,10)}#创建一个字典字母对应数字
data=pd.Series(dic)
print(data.shape)

查看一下data的维度:

(9,)

series的切片和索引:和序列的切片和索引相同;

print(data[[0,1,2,3]])
print(data[2:3])#切片
print(data[data<3])#布尔索引

结果:dtype就是数据的类型了;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值