三元一次方程组例题_三元一次方程组的解法

本文由小锐老师讲解三元一次方程组的解题思路,包括"代入消元法"和"加减消元法"。通过实例解析如何将三元一次方程组转换为二元一次方程组,从而解决复杂问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:三元一次方程组的解法

今天,由小锐老师给大家带来三元一次方程组的解题思路。

【题型1】

(一)思路:

做三元一次方程,大家都觉得很麻烦,各种x, y, z,不停地计算,但是我希望这种抱怨只停留在“麻烦”这个层面,千万不要误认为,三元一次方程组是“难题”!

早在我们学二元一次方程组的时候,我就和大家讲述过,“为什么我们不会做二元一次方程组”,其实只不过是因为多了一个未知数,从只有x变成了同时有x, y.这个时候,我们提出的方法是“消元”,有些孩子不能理解。

“消元”,字面意思理解:消去元,而元指的就是未知数.再深一点理解就是,我们会做的,很熟练的,是一元一次方程,算得都很好,那我们就要想个办法把二元一次方程组变成一元一次方程,如果我们完美地做到,二元一次方程组也就不是问题了.因此,我们要去把一个未知数去“消灭掉”达成我们的目的,而这就是所谓的“消元”.

“代入消元法”大家都已经很熟悉了,那再来说一下“加减消元法”.

怎么样的形式能通过加减消去呢,我们会发现不管是加还是减,都必须保证“相同”.比如2x和2x,通过减法就消去了x;再比如3y和-3y,通过加法就消去了y;当然了,显然2x和3x直接加减肯定不能消去x,所以我们就去把2x和3x变成一样的“东西”,这个时候大家就会意识到都变成6x,那么就可以加减消去了.

回到我们的三元一次方程组,我们还是一样的思维,三元一次不会做怎么办?变成我们会做的“二元一次方程组”就迎刃而解了.那怎么变成二元一次方程组呢,依旧依靠我们的“消元”.

明确了这些,我们就来看题型1.

【题型1】

第一步:先确定“消灭目标”,也就是决定消去哪个字母,是x, y, z中的哪一个.

第二步:怎么消去选择的目标呢,“加减消元法”绝对是最好的“武器”.

第三步:幸福地解熟悉的“二元一次方程组”.

为例,我们选择消去x.

那么这三个式子直接加减没有办法消去x,所以我们就要通过三个式子的两两搭配,消去x.

先看①和②,要消去x,应该把①式x2变成:2x-4y+6z=-20,这个时候就可以和②式通过减法消去x,即②-①x2:

再看①和③,应该把①式x3变成:3x-6y+9z=-30,这个时候就可以和③式通过减法消去

x,即③-①x3:

此时,新得到的④和⑤组成了我们熟悉的“二元一次方程组”:

,这个我们通过加减消元,特别熟练地算出:

,此时再往回带,求出x=2,

即原方程组的解为

想必现在,大家都能够知道怎么合理地解三元一次方程组了,接下来就要大量的练习来尝试咯.

【题型2】

这种题目也是有专门的做法的.

我们通常设

,得到:

,代入5x+2y-3Z=8得:5x2k+2x3k-3x4k=8,解得:k=2,再回代:

这一类题目都用这种方法做就格外简单了.

【题型3】

这个涉及到我们上学期的多连比问题,由题意,可以很快地得到:x: y: z=15: 10: 8,

上学期做比例应用题相同的假设方法,因为x: y: z=15: 10: 8,所以设x=15k,y=10k,z=8k,再代入x+y+z=66,得:15k+10K+8K=66,解得:k=2,回代得:

.

这种带比例的三元一次方程组用这种做法就可以容易的解决了.

★★★希望这些总结给大家对三元一次方程组的做法更加清晰,如果还有困惑,随时私信问小锐老师哦.我们务必学到哪,会到哪!返回搜狐,查看更多

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值