ialm不精确增广拉格朗日乘数_求解稀疏优化问题1——增广拉格朗日方法+半光滑牛顿方法...

本文介绍了使用不精确增广拉格朗日乘数法(IALM)结合半光滑牛顿法解决稀疏优化问题。通过ALM转化原问题并用半光滑牛顿法求解子问题,利用问题的稀疏结构,实现了二阶方法的精度与一阶方法的效率。详细讨论了增广拉格朗日函数、Moreau包络以及半光滑牛顿法的迭代过程。
摘要由CSDN通过智能技术生成

19b078af3f37c773e62c1c7006dcfb78.png

在这个一阶方法盛行的时代中,二阶方法看起来不那么受欢迎,能想到的优点好像只有“精度高”,但是原始的二阶方法(Newton,trust region,cubic regularizarion Newton)代价实在是太大了。 为了权衡优缺点,出现了很多“似二非二”的算法,比如拟牛顿(quasi Newton),随机牛顿(stochastic Newton),次采样牛顿(subsample Newton)。这篇文章想讲下二阶方法一个很有意思的应用:利用半光滑牛顿(semismooth Newton)快速求解稀疏问题。目前已经出了许多相关文章,主要来自孙德锋老师的团队。有兴趣的可以参考他的主页。关于理论性的东西我就不说了(好像你会似的),这里我想简单阐述下这些文章的主要思想。·另一篇关于半光滑牛顿的文章看

邓康康:求解稀疏优化问题2——临近点方法+半光滑牛顿法​zhuanlan.zhihu.com

考虑一般问题:

其中

,并且
特别大;
  • 表示一个凸可微函数,例如
  • 表示一个闭真凸函数,一般为稀疏正则函数,比如 LASSO:
    ,Fused LASSO,Clustered LASSO等

这个问题太general了,并且特别多的一阶方法可以去求解它,比如临近梯度方法(proximal gradient)以及它的加速版FISTA;交替方向乘子法(ADMM),原始对偶(primal dual)等等。这些方法说快也挺快的,毕竟只用到了一阶信息。但是他们没有考虑到两点:

  • 的存在,通常直接考虑
  • 稀疏性的利用.

所以当

特别大的时候,这些方法也没那么快了。接下来我要讲的这个框架就完美的利用了这两点。大概思想是
  • 利用ALM求解对偶问题,
  • 利用二阶方法求解ALM的子问题,这里利用了问题本身的稀疏结构,使得该二阶方法既拥有了二阶方法的精度,又拥有一阶方法的复杂度,美哉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值