自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 论文辅助学习+总结 “Latent Multi-view Subspace Clustering”

子空间聚类是许多应用中的基本且重要的技术,特别是对于高维数据。一般来说,子空间聚类方法[7,18,12]假设数据点是从对应于不同簇的多个子空间中提取的。最近,提出了基于自表示的子空间聚类,其中每个数据点可以用数据点本身的线性组合来表示。一般公式可以表示为其中标量 α > 0 平衡重建误差和子空间表示 Z 的正则化。L(·,·)和Ω(·)分别表示损失函数和正则化项,它们通常基于不同的假设来定义。例如,稀疏子空间聚类(SSC)[7] 基于 l1-范数在无限多个可能的表示中搜索最稀疏的表示。

2023-10-23 11:39:56 359 1

原创 论文阅读+总结:“Graph Learning for Multiview Clustering”

用多个视角的各种特征来表示一个对象是合理和恰当的,而且通常这些不同的特征是相互补充的。多视图特征学习可以集成所有这些特征并利用视图之间的相关性来获得更精细和更高层次的信息。因此,有效地集成来自不同视图的异构特征以提高聚类性能是一个重要的课题。数据结构通常以图的形式来表征。大多数现有的基于图的聚类方法将数据聚类与图构建分开。除了高斯函数之外,还有几种图构造方法,例如局部线性相似图[1]、k近邻图[2]、[3]、局部判别图[4]、[5]、成对相似图[ 6],以及通过子空间聚类学习的图[7]。

2023-10-17 20:45:04 323

原创 论文:Consistent and Specific Multi-View Subspace Clustering 辅助阅读+总结

子空间聚类对于许多科学问题至关重要,例如表示学习(Liu and Yan 2011)、运动分割(Rao et al. 2010)和图像处理(Ma et al. 2007)。给定/位于子空间并集中的多个类别的数据,将数据集聚类为类别可以简化为将数据分配到各自的子空间,其中每个数据样本由同一子空间中其他样本的线性组合表示。近年来已经开发了许多子空间聚类方法(Parsons、Haque 和 Liu 2004)。例如,稀疏子空间聚类(Elhamifar 和 Vidal 2013)从数据的子空间中找到稀疏表示。

2023-10-11 20:54:02 243

原创 论文:Low-Rank Tensor Constrained Multiview Subspace Clustering 辅助阅读+总结

机器学习和计算机视觉中的许多问题都涉及多视图数据,其中每个数据点由来自多个特征源的不同信息表示。例如,在计算机视觉问题中,图像和视频通常由不同类型的特征来描述,例如颜色、纹理和边缘。网页还能够基于文本、超链接和可能存在的视觉信息以多视图方式表示。一般来说,多视图表示可以无缝地捕获来自多个数据线索的丰富信息以及不同线索之间的互补信息,从而有利于各种任务,例如聚类、分类、去噪。在本文中,我们重点关注通过利用多视图表示来推进聚类。为了将不同的特征集成到统一的框架中,大多数现有的多视图聚类方法都采用基于图的模型。

2023-10-07 16:28:19 688 1

原创 Diversity-induced Multi-view Subspace Clustering 辅助阅读+总结

在本文中,我们重点研究如何通过挖掘多视图特征之间的互补信息来促进多视图聚类。针对这一任务,提出了一种多视图聚类框架,称为多样性诱导的多视图子空间聚类( DiMSC )。在我们的方法中,我们将现有的子空间聚类扩展到多视图领域,并利用希尔伯特施密特独立性准则( HSIC )作为多样性项来探索多视图表示的互补性,通过交替最小化优化可以有效地解决这一问题。与其他多视图聚类方法相比,增强的互补性降低了多视图表示之间的冗余性,提高了聚类结果的准确性。在图像和视频人脸聚类上的实验表明,所提出的方法优于当前最先进的方法。

2023-09-27 16:48:24 236 1

原创 Multiview Clustering by Consensus Spectral Rotation Fusion

随着信息技术的发展,各种电子设备不断生成数据或通过多种特征描述数据[1],[2]。例如,移动物体的轨迹可以被各种监控摄像机同时捕获[3],并且图像可以通过多种特征来描述,例如颜色、纹理和边缘[4]、[5]。此类数据被视为多视图数据。多视图聚类(MVC)旨在使用多个特征信息将数据样本聚类成几个不同的组。这提供了一种自然的方式来揭示多视图数据的底层结构。与单视图数据相比,多视图数据通常为数据分析提供补充信息[6]-[9]。多视图数据聚类的关键问题在于有效捕获多个视图之间一致且互补的信息。

2023-09-17 11:32:39 390 1

原创 入门:“A Survey on Multi-View Clustering” 辅助阅读+总结

聚类[1]是一种根据受试者之间的相似性将受试者样本分类为子组的范例。聚类是机器学习、模式识别和数据挖掘领域的一项基本任务,具有广泛的应用。一旦可以通过聚类方法获得子组,就可以进行许多后续的分析任务以实现不同的最终目标。传统的聚类方法仅使用受试者的一组特征或一个信息窗口。当每个单独的主题都有多组特征时,如何整合这些视图以帮助识别基本的分组结构是本文关注的问题,这通常被称为多视图聚类。多视图数据在大数据时代的实际应用中非常常见。

2023-09-13 17:10:32 1073 1

原创 入门:“A Survey on Multi-view Learning” 辅助学习(下)+总结

主要是5-7章,建议大家去画一下思维导图,清晰很多。这里只放除5-7章的部分,希望大家自己动手一下,只是5-7章在读完之后大概一个下午左右就能搞定。第一次读这么长的论文,但其实还好,一些推导部分需要自己动手推一下才了解,其实我个人也有很多看不太懂的地方,问题还蛮多的,希望有大佬看到可以指点一下,感激不尽。

2023-09-08 20:03:57 142 1

原创 入门:“A Survey on Multi-view Learning” 辅助学习(中)

不知道是由于作者电脑原因还是csdn的原因,在试图一次性上传这篇论文时卡爆了,事实上即便分三次也很卡,简单的说,本篇论文的辅助阅读分三次上传:上篇是这篇论文的前四章之前中篇是5-7章,也是个人认为比较重要的部分下篇是后三章+总结希望查看的各位大佬按需选择,如果有出错之处也欢迎大家指正与讨论,写这个辅助学习一个是记录一下自己的学习过程,另一个是希望能帮到读论文的你,本文仅供参考,还是看论文原文最为清晰。

2023-09-08 19:56:29 198 1

原创 入门:“A Survey on Multi-view Learning” 辅助学习(上)

在视频监控、社会计算和环境科学中的大多数科学数据分析问题中,数据是从不同领域收集的或从不同特征提取器获得的,并且表现出异构属性,因为每个数据示例的变量可以自然地划分为组。每个变量组被称为特定视图,并且特定问题的多个视图可以采取不同的形式,例如 a) 颜色描述符、局部二进制模式、局部形状描述符、慢速特征和由多个摄像机捕获的时空上下文,用于稀疏摄像机网络中的人员重新识别和全局活动理解,以及 b) 文档中的单词、描述文档的信息(例如标题) 、作者和期刊)以及科学文献管理的同被引网络图(见图 1)。

2023-09-08 19:51:32 145 1

原创 入门:The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices辅助阅读+总结

假设给定的数据被排列为大矩阵 D ∈ Rm×n 的列。估计低维子空间的数学模型是找到一个低秩矩阵A,使得A和D之间的差异最小化,从而导致以下约束优化:其中 r ≪ min(m, n) 是子空间的目标维度, ‖ · ‖F 是 Frobenius 范数,其对应于假设数据被 i.i.d的 高斯噪声损坏。这个问题可以通过先计算 D 的奇异值分解(SVD),然后将 D 的列向量投影到 D 的 r 个主左奇异向量所组成的子空间上来得到方便地解决[13]。

2023-09-01 23:40:24 384 1

原创 入门:“Sparse Subspace Clustering: Algorithm, Theory, and Applications”辅助阅读+总结

高维数据在机器学习、信号和图像处理、计算机视觉、模式识别、生物信息学等许多领域中无处不在。例如,图像由数十亿像素组成,视频可以包含数百万帧、文本和网络文档与数十万个特征等相关联。数据的高维不仅增加了算法的计算时间和内存需求,而且由于噪声效应和样本数量不足而对其性能产生不利影响。环境空间维度,通常称为“维度诅咒”[1]。然而,高维数据通常位于低维结构中,而不是均匀分布在周围空间中。恢复数据中的低维结构不仅有助于降低算法的计算成本和内存需求,还可以减少数据中高维噪声的影响,提高推理、学习和识别任务的性能。

2023-09-01 16:40:34 359 1

原创 入门: “A tutorial on spectral clustering” 辅助阅读+问题+总结

聚类是探索性数据分析中使用最广泛的技术之一,应用范围从统计学、计算机科学、生物学到社会科学或心理学。几乎在每个处理经验数据的科学领域,人们都试图通过识别数据中的“相似行为”组来获得对数据的第一印象。在本文中,我们将向读者介绍谱聚类算法系列。与 k-means 或single linkage等“传统算法”相比,谱聚类具有许多基本优势。通过谱聚类获得的结果通常优于传统方法,谱聚类实现起来非常简单,并且可以通过标准线性代数方法有效地求解。本教程是对谱聚类的独立介绍。

2023-08-31 17:05:00 522

原创 入门:Robust Subspace Structure Recovery and Subspace Segmentation via Low-Rank Representation 辅助阅读+总结

在信号处理和模式分析中,数据通常有一种结构,使我们能够智能地表示和处理它。在所有选择中,线性子空间是现实生活应用中这种表示的最常见选择,因为它的计算效率较低且表示更容易。为此,考虑从多个低秩子空间近似抽取数据比在主成分分析 (PCA) 方法中仅考虑单个子空间更合理。考虑从多个子空间提取的数据的方法更为通用,并导致子空间分割(也称为聚类)的问题。子空间分割的问题是将数据分割成不同的簇,其中每个簇与不同的子空间相关联。我们要解决的主要问题是处理数据中的噪声、损坏和异常值等错误。

2023-08-27 16:08:03 255

原创 入门:“Robust Recovery of Subspace Structures by Low-Rank Representation” 辅助阅读+问题+总结

在模式分析和信号处理中,一个基本原则是数据通常包含某种类型的结构,可以实现智能表示和处理。因此,人们通常需要一个参数模型来表征一组给定的数据。给定的数据集很少可以用单个子空间来很好地描述。更合理的模型是将数据视为位于多个子空间附近,即数据被视为从多个低秩子空间的混合中近似抽取的样本,如图1所示。子空间的通用性和重要性自然导致了子空间分割(或聚类)的挑战性问题,其目标是将数据分割(聚类或分组)成簇,每个簇对应于一个子空间。

2023-08-25 18:52:14 820 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除