多因素方差分析中预测因素的筛多_案例5:SPSS--方差分析

a2994302-9511-eb11-8da9-e4434bdf6706.png

一、方差分析简介

1.1 方差分析基本思想

通过分析研究不同变量的变异对总变异的贡献大小,确定控制变量对研究结果影响力的大小。

  • 如果控制变量的不同水平对结果产生了显著影响,那么它和随机变量共同作用,必然使结果有显著的变化
  • 如果控制变量的不同水平对结果没有显著的影响,那么结果的变化主要由随机变量起作用,和控制变量关系不大

1.2 方差分析的前提条件

  1. 独立,各组数据相互独立,互不相关;
  2. 正态:即各组数据符合正态分布;
  3. 方差齐性:即各组方差相等。

1.3 方差分析通常使用F统计量检验

在spss中经常使用方差齐性检验(都是levene检验),

  • 一般情况下,只要sig值大于0.05就以认为方差齐性的假设成立,因此方差分析的结果应该值得信赖;
  • 如果sig值小于或等于0.05方差齐性的假设就值得怀疑,导致方差分析的结果也值得怀疑。

SPSS会自动计算 F 统计值, F 服从 (k-1,n-k) 自由度的 F 分布(k 是水平数, n 为个案数), SPSS依据 F 分布表给出相应的相伴概率值。

  • 如果相伴概率值小于显著性水平(一般为0.05) ,则拒绝零假设,认为控制变量不同水下各总体均值有显著差异;
  • 反之,则认为控制变量不同水平下各总体均值没有显著差异。

二、不同分析方法

首先要理解实验的设计或模型的类型,选取正确的方法才能得出正确的结论

2.1 单因素设计方差分析

单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。

2.2 随机区组设计方差分析

又称配伍组设计。在进行统计分析时,将区组变异离均差平方和从完全随机设计的组内离均差平方和中分离出来,从而减小组内平方和(误差平方和),提高了统计检验效率。

2.3 析因设计方差分析

析因设计(Facorial design)是将两个或两个以上因素的各种水平进行排列组合、交叉分组的实验设计,是对影响因素的作用进行全面分析的设计方法,可以研究两个或者两个以上因素多个水平的效应,也可以研究各因素之间是否有交互作用并找到最佳组合。常见析因设计有: 2x2析因设计、IxJ两因素析因设计、IxJxK三因素析因设计。

2.4 交叉设计方差分析

交叉设计(cross-over design)是一种特殊的自身对照设计,它按事先设计好的实验次序,在各个时期对受试对象先后实施各种处理,以比较处理组间的差异。受试对象可以采用完全随机分为两组或分层随机化的方法来安排。

2.5 拉丁方设计方差分析

拉丁方设计(latin square design文库)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。

2.6 协方差分析

协方差分析是将那些很难控制的因素作为协变量,在排除协变量影响的条件下,分析控制变量对观察变量的影响,从而更加准确地对控制因素进行评价。协方差分析要求协变量应是连续数值型,多个协变量间互相独立,且与控制变量之间也没有交互影响。单因素方差分析和多因素方差分析中的控制变量都是一些定性变量。而协方差分析中则包含了定性变量(控制变量),又包含了定量变量(协变量)。

2.7 嵌套设计方差分析

嵌套设计被称为巢式设计(nested design)有些教科书上称这类资料为组内又分亚组的分类资料。根据因素数的不同,套设计可分为二因素(二级)、三因素(三级)等设计。 将全部k个因素按主次排列,依次称为1级,2级 … k级因素,再将总离差平方和及自由度进行分解,其基本思想与一般方差分析相同。所不同的是分解法有明显的区别,它侧重于主要因素,并且,第i级因素的显著与否,是分别用第i级与第i+1级因素的均方为分子和分母来构造F统计量,并以F测验为其理论根据的。

2.8 重复测量方差分析

重复测量资料是由在不同时间点上对同一对象的同一观察指标进行多次测量所得,重复测量设计是在科研工作中常见的设计方法,常用来分析在不同时间点上该指标的差异。重复测量设计最主要的优点就是提高了处理组间的精确度,因为它可以通过对同一个体数据的分析估计出实验误差的大小。

三、案例分析(后附源文件)

3.1 析因设计方差分析

举个例子,

需求:分析A、B两种药物联合应用对红细胞增加数的影响,数据见表。

根据数据表和需求,采用析因设计方差分析研究各因素之间是否有交互作用并找到最佳组合。

a6994302-9511-eb11-8da9-e4434bdf6706.png

操作步骤:

aa994302-9511-eb11-8da9-e4434bdf6706.png

ac994302-9511-eb11-8da9-e4434bdf6706.png

b0994302-9511-eb11-8da9-e4434bdf6706.png

b3994302-9511-eb11-8da9-e4434bdf6706.png

!!!报告分析:

b6994302-9511-eb11-8da9-e4434bdf6706.png
此步骤形仅仅用于操作演示

b9994302-9511-eb11-8da9-e4434bdf6706.png

bb994302-9511-eb11-8da9-e4434bdf6706.png

3.2 嵌套设计方差分析

举个例子,

需求:选取某种植物3个品种(Plant),在每一株内选取两片叶子(Leaf)(嵌套在植株因素下的第二个因素),用取样器从每一片叶子上选取同样面积的两个样本(两次重复),称取湿重,结果见表。对以上结果进行方差分析

根据所选的数据符合嵌套设计方差分析方法(分为一级、二级...)

be994302-9511-eb11-8da9-e4434bdf6706.png

操作步骤:

bf994302-9511-eb11-8da9-e4434bdf6706.png

c5994302-9511-eb11-8da9-e4434bdf6706.png

这一步骤非常重要!!!

报告分析

正确操作结果:

c8994302-9511-eb11-8da9-e4434bdf6706.png

错误操作结果:(没有进行相应的语法添加)

ce994302-9511-eb11-8da9-e4434bdf6706.png

3.3 重复测量方差分析

举个例子,

需求:某研究者欲了解一套新的锻炼方法的减肥效果,该研究者在某小学随机抽取了12名肥胖学生,随机分成两组!第一组每天下午按新的锻炼方法锻炼!第二组不参与新的锻炼,方法锻炼并于实验开始的第1、2、3个月分别测量学生体重减重情况,测量值如表

根据数据特征(不同时间点对同一指标重复测量)采用重复测量方差分析

cf994302-9511-eb11-8da9-e4434bdf6706.png

操作步骤:

d0994302-9511-eb11-8da9-e4434bdf6706.png

d2994302-9511-eb11-8da9-e4434bdf6706.png

d3994302-9511-eb11-8da9-e4434bdf6706.png

!!!报告分析

d4994302-9511-eb11-8da9-e4434bdf6706.png

d6994302-9511-eb11-8da9-e4434bdf6706.png

d8994302-9511-eb11-8da9-e4434bdf6706.png

d9994302-9511-eb11-8da9-e4434bdf6706.png

拓展:当测量时间不是等间距时:

db994302-9511-eb11-8da9-e4434bdf6706.png

点击获取

案例数据​pan.baidu.com

待更新...

  • 0
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值