端到端的人工智能(AI)驱动解决方案是一种综合性的服务,它涵盖了从数据的收集和处理到最终产品或服务的交付的整个流程。
随着大模型持续向边缘侧和端侧渗透,AI计算和推理工作逐步由云端迁移至手机、PC、智能汽车等终端产品上运行。
端到端解决方案的优势在于它们能够为客户提供一站式服务,减少了在不同供应商或服务之间切换的需要,同时也确保了解决方案的各个部分能够无缝协作,提高整体的效率和效果。
一、问题与挑战
端到端的人工智能(AI)驱动解决方案虽然提供了从数据输入到决策输出的直接路径,但同时也带来了一系列的挑战:
- 数据需求:端到端AI系统通常需要大量的高质量、多样化的数据来训练模型,以避免“垃圾进垃圾出”的问题。数据的采集、清洗和标注过程复杂且成本高昂,占据了端到端自动驾驶开发中80%以上的研发成本。
- 算力需求:随着模型规模的增大,所需的计算资源也相应增加。在自动驾驶领域,例如特斯拉拥有近10万张A100 GPU,位居全球top5,预计到今年底会拥有100EFlops的算力,并针对自动驾驶自研了Dojo,在算力上遥遥领先。
- 算法设计:设计合适的算法进行端到端训练是一个挑战,业界尝试了模仿学习、强化学习等多种方法。端到端训练需要消耗大量的算力,这对算力受限的企业来说是一个难题。
端到端AI解决方案的难点在于需要解决这些技术和非技术挑战,确保系统的高效、可靠和合规。