好用的cnn网络_DPCNN,究竟是多么牛逼的网络呢?

ACL2017年中,腾讯AI-lab提出了DeepPyramidConvolutionalNeuralNetworksforTextCategorization(DPCNN)。论文中提出了一种基于word-level级别的网络-DPCNN,由于上一篇文章介绍的TextCNN不能通过卷积获得文本的长距离依赖关系,而论文中DPCNN通过不断加深网络,可以抽取长距离的文本依赖关系。实验证明在不增加太多计算成本的情况下,增加网络深度就可以获得最佳的准确率。‍

DPCNN结构

究竟是多么牛逼的网络呢?我们下面来窥探一下模型的芳容。

DPCNN结构细节

模型是如何通过加深网络来捕捉文本的长距离依赖关系的呢?下面我们来一一道来。为了更加简单的解释DPCNN,这里我先不解释是什么是Regionembedding,我们先把它当作wordembedding。

等长卷积

首先交代一下卷积的的一个基本概念。一般常用的卷积有以下三类:

假设输入的序列长度为n,卷积核大小为m,步长(stride)为s,输入序列两端各填补p个零(zeropadding),那么该卷积层的输出序列为(n-m+2p)/s+1。

(1)窄卷积(narrowconvolution):步长s=1,两端不补零,即p=0,卷积后输出长度为n-m+1。

(2)宽卷积(wideonvolution):步长s=1,两端补零p=m-1,卷积后输出长度n+m-1。

(3)等长卷积(equal-widthconvolution):步长s=1,两端补零p=(m-1)/2,卷积后输出长度为n。如下图所示,左右两端同时补零p=1,s=3。

池化

那么DPCNN是如何捕捉长距离依赖的呢?这里我直接引用文章的小标题——Downsamplingwiththenumberoffeaturemapsfixed。

作者选择了适当的两层等长卷积来提高词位embedding的表示的丰富性。然后接下来就开始Downsampling(池化)。再每一个卷积块(两层的等长卷积)后,使用一个size=3和stride=2进行maxpooling进行池化。序列的长度就被压缩成了原来的一半。其能够感知到的文本片段就比之前长了一倍。

例如之前是只能感知3个词位长度的信息,经过1/2池化层后就能感知6个词位长度的信息啦,这时把1/2池化层和size=3的卷积层组合起来如图所示。

固定featuremaps(filters)的数量

为什么要固定featuremaps的数量呢?许多模型每当执行池化操作时,增加featuremaps的数量,导致总计算复杂度是深度的函数。与此相反,作者对featuremap的数量进行了修正,他们实验发现增加featuremap的数量只会大大增加计算时间,而没有提高精度。

另外,夕小瑶小姐姐在知乎也详细的解释了为什么要固定featuremaps的数量。有兴趣的可以去知乎搜一搜,讲的非常透彻。

固定了featuremap的数量,每当使用一个size=3和stride=2进行maxpooling进行池化时,每个卷积层的计算时间减半(数据大小减半),从而形成一个金字塔。

这就是论文题目所谓的Pyramid。

好啦,看似问题都解决了,目标成功达成。剩下的我们就只需要重复的进行等长卷积+等长卷积+使用一个size=3和stride=2进行maxpooling进行池化就可以啦,DPCNN就可以捕捉文本的长距离依赖啦!

Shortcutconnectionswithpre-activation

但是!如果问题真的这么简单的话,深度学习就一下子少了超级多的难点了。

(1)初始化CNN的时,往往各层权重都初始化为很小的值,这导致了最开始的网络中,后续几乎每层的输入都是接近0,这时的网络输出没有意义;

(2)小权重阻碍了梯度的传播,使得网络的初始训练阶段往往要迭代好久才能启动;

(3)就算网络启动完成,由于深度网络中仿射矩阵(每两层间的连接边)近似连乘,训练过程中网络也非常容易发生梯度爆炸或弥散问题。

当然,上述这几点问题本质就是梯度弥散问题。那么如何解决深度CNN网络的梯度弥散问题呢?当然是膜一下何恺明大神,然后把ResNet的精华拿来用啦!ResNet中提出的shortcut-connection/skip-connection/residual-connection(残差连接)就是一种非常简单、合理、有效的解决方案。

类似地,为了使深度网络的训练成为可能,作者为了恒等映射,所以使用加法进行shortcutconnections,即z+f(z),其中f用的是两层的等长卷积。这样就可以极大的缓解了梯度消失问题。

另外,作者也使用了pre-activation,这个最初在何凯明的“IdentityMappingsinDeepResidualNetworks上提及,有兴趣的大家可以看看这个的原理。直观上,这种“线性”简化了深度网络的训练,类似于LSTM中constanterrorcarousels的作用。而且实验证明pre-activation优于post-activation。

整体来说,巧妙的结构设计,使得这个模型不需要为了维度匹配问题而担忧。

Regionembedding

同时DPCNN的底层貌似保持了跟TextCNN一样的结构,这里作者将TextCNN的包含多尺寸卷积滤波器的卷积层的卷积结果称之为Regionembedding,意思就是对一个文本区域/片段(比如3gram)进行一组卷积操作后生成的embedding。

另外,作者为了进一步提高性能,还使用了tv-embedding(two-viewsembedding)进一步提高DPCNN的accuracy。

上述介绍了DPCNN的整体架构,可见DPCNN的架构之精美。本文是在原始论文以及知乎上的一篇文章的基础上进行整理。本文可能也会有很多错误,如果有错误,欢迎大家指出来!建议大家为了更好的理解DPCNN,看一下原始论文和参考里面的知乎。

用Keras实现DPCNN网络

这里参考了一下kaggle的代码,模型一共用了七层,模型的参数与论文不太相同。这里滤波器通道个数为64(论文中为256),具体的参数可以参考下面的代码,部分我写了注释。

defCNN(x):block=Conv1D(filter_nr,kernel_size=filter_size,padding=same,activation=linear,kernel_regularizer=conv_kern_reg,bias_regularizer=conv_bias_reg)(x)block=BatchNormalization()(block)block=PReLU()(block)block=Conv1D(filter_nr,kernel_size=filter_size,padding=same,activation=linear,kernel_regularizer=conv_kern_reg,bias_regularizer=conv_bias_reg)(block)block=BatchNormalization()(block)block=PReLU()(block)returnblockdefDPCNN():filter_nr=64#滤波器通道个数filter_size=3#卷积核max_pool_size=3#池化层的pooling_sizemax_pool_strides=2#池化层的步长dense_nr=256#全连接层spatial_dropout=0.2dense_dropout=0.5train_embed=Falseconv_kern_reg=regularizers.l2(0.00001)conv_bias_reg=regularizers.l2(0.00001)comment=Input(shape=(maxlen,))emb_comment=Embedding(max_features,embed_size,weights=[embedding_matrix],trainable=train_embed)(comment)emb_comment=SpatialDropout1D(spatial_dropout)(emb_comment)#regionembedding层resize_emb=Conv1D(filter_nr,kernel_size=1,padding=same,activation=linear,kernel_regularizer=conv_kern_reg,bias_regularizer=conv_bias_reg)(emb_comment)resize_emb=PReLU()(resize_emb)#第一层block1=CNN(emb_comment)block1_output=add([block1,resize_emb])block1_output=MaxPooling1D(pool_size=max_pool_size,strides=max_pool_strides)(block1_output)#第二层block2=CNN(block1_output)block2_output=add([block2,block1_output])block2_output=MaxPooling1D(pool_size=max_pool_size,strides=max_pool_strides)(block2_output)#第三层block3=CNN(block2_output)block3_output=add([block3,block2_output])block3_output=MaxPooling1D(pool_size=max_pool_size,strides=max_pool_strides)(block3_output)#第四层block4=CNN(block3_output)block4_output=add([block4,block3_output])block4_output=MaxPooling1D(pool_size=max_pool_size,strides=max_pool_strides)(block4_output)#第五层block5=CNN(block4_output)block5_output=add([block5,block4_output])block5_output=MaxPooling1D(pool_size=max_pool_size,strides=max_pool_strides)(block5_output)#第六层block6=CNN(block5_output)block6_output=add([block6,block5_output])block6_output=MaxPooling1D(pool_size=max_pool_size,strides=max_pool_strides)(block6_output)#第七层block7=CNN(block6_output)block7_output=add([block7,block6_output])output=GlobalMaxPooling1D()(block7_output)#全连接层output=Dense(dense_nr,activation=linear)(output)output=BatchNormalization()(output)output=PReLU()(output)output=Dropout(dense_dropout)(output)output=Dense(6,activation=sigmoid)(output)model=Model(comment,output)model.summary()model.compile(loss=binary_crossentropy,optimizer=optimizers.Adam(),metrics=[accuracy])returnmodel

DPCNN实战

上面我们用keras实现了我们的DPCNN网络,这里我们借助kaggle的有毒评论文本分类竞赛来实战下我们的DPCNN网络。

具体地代码,大家可以去我的GitHub上面找到源码:

https://github.com/hecongqing/TextClassification/blob/master/DPCNN.ipynb

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值