语音计算矩形面积_如何计算广义球面矩形的面积

d9f15c172426b1dd30a2227240f73923.png

780d4719f77c941d4a9242ceba49c2b3.png

如图,DC为赤道上的圆弧,AB为纬线上的圆弧,两个平面π和φ分别通过两极切割球面,形成割线AD和BC,显然,DC、AD、BC皆为大圆弧。我们称四边形ABCD为广义球面矩形。

这个矩形的面积如何计算呢?

用矩形在纬度线上的弧长与Δβ的乘积,然后求和就可以得到矩形的面积,也就是

S=∫αcosβdβ

=αsinβ+C [1]

其中α是两个面π与φ的夹角,也就是维度线在矩形中的弧长。cosβ为矩形中不同纬度线上的纬度圆的半径。

如果β为纬度线AB的纬度,那么这个广义矩形面积为

S=αsinβ

可见,若这个广义矩形处于非常小的区域,那么在单位球面上其面积就是αβ。αβ是什么?就是这个矩形的长与宽的积。也就是说,平面矩形的面积为广义球面矩形的面积的特例。

45b9379ea988672b21d069fbf8375268.png
图四

由广义矩形的公式可见,红色圆以下赤道以上的区域的球面面积(也是在整个圆周上的广义矩形的面积)等于与球等径且高度为sinβ的圆柱面的面积。同样,而整个球面的面积等于与球等径且高度等于圆柱面的面积。

参考

  1. ^关于球面广义矩形面积积分公式 https://zhuanlan.zhihu.com/p/147184449
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值