

如图,DC为赤道上的圆弧,AB为纬线上的圆弧,两个平面π和φ分别通过两极切割球面,形成割线AD和BC,显然,DC、AD、BC皆为大圆弧。我们称四边形ABCD为广义球面矩形。
这个矩形的面积如何计算呢?
用矩形在纬度线上的弧长与Δβ的乘积,然后求和就可以得到矩形的面积,也就是
S=∫αcosβdβ
=αsinβ+C [1]
其中α是两个面π与φ的夹角,也就是维度线在矩形中的弧长。cosβ为矩形中不同纬度线上的纬度圆的半径。
如果β为纬度线AB的纬度,那么这个广义矩形面积为
S=αsinβ
可见,若这个广义矩形处于非常小的区域,那么在单位球面上其面积就是αβ。αβ是什么?就是这个矩形的长与宽的积。也就是说,平面矩形的面积为广义球面矩形的面积的特例。

由广义矩形的公式可见,红色圆以下赤道以上的区域的球面面积(也是在整个圆周上的广义矩形的面积)等于与球等径且高度为sinβ的圆柱面的面积。同样,而整个球面的面积等于与球等径且高度等于圆柱面的面积。
参考
- ^关于球面广义矩形面积积分公式 https://zhuanlan.zhihu.com/p/147184449