python中plt.hist_python中plt.hist参数详解

本文介绍了Python中matplotlib.pyplot.hist函数的使用,包括参数解释和示例。通过示例展示了如何绘制概率密度的直方图,以及如何设置颜色、透明度和最佳拟合线。
摘要由CSDN通过智能技术生成

matplotlib.pyplot.hist(

x, bins=10, range=None, normed=False,

weights=None, cumulative=False, bottom=None,

histtype=u'bar', align=u'mid', orientation=u'vertical',

rwidth=None, log=False, color=None, label=None, stacked=False,

hold=None, **kwargs)

x : (n,) array or sequence of (n,) arrays

这个参数是指定每个bin(箱子)分布的数据,对应x轴

bins : integer or array_like, optional

这个参数指定bin(箱子)的个数,也就是总共有几条条状图

normed : boolean, optional

If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)

这个参数指定密度,也就是每个条状图的占比例比,默认为1

color : color or array_like of colors or None, optional

这个指定条状图的颜色

我们绘制一个10000个数据的分布条状图,共50份,以统计10000分的分布情况

"""

Demo of the histogram (hist) function with a few features.

In addition to the basic histogram, this demo shows a few optional features:

* Setting the number of data bins

* The ``normed`` flag, which normalizes bin heights so that the integral of

the histogram is 1. The resulting histogram is a probability density.

* Setting the face color of the bars

* Setting the opacity (alpha value).

"""

import numpy as np

import matplotlib.mlab as mlab

import matplotlib.pyplot as plt

# example data

mu = 100 # mean of distribution

sigma = 15 # standard deviation of distribution

x = mu + sigma * np.random.randn(10000)

num_bins = 50

# the histogram of the data

n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5)

# add a 'best fit' line

y = mlab.normpdf(bins, mu, sigma)

plt.plot(bins, y, 'r--')

plt.xlabel('Smarts')

plt.ylabel('Probability')

plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')

# Tweak spacing to prevent clipping of ylabel

plt.subplots_adjust(left=0.15)

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值