fastica和pca区别_PCA与ICA

本文介绍了PCA(主成分分析)和ICA(独立成分分析)在机器学习中的作用。PCA主要针对数据降维,通过最大化方差来提取主要特征;ICA则用于盲信号分离,如在鸡尾酒会问题中分离不同声音。文章阐述了PCA的计算步骤,并提供了Python实现PCA的代码示例。同时,文章指出ICA的实现更复杂,提供了MATLAB和Python的FastICA算法代码片段。
摘要由CSDN通过智能技术生成

关于机器学习理论方面的研究,最好阅读英文原版的学术论文。PCA主要作用是数据降维,而ICA主要作用是盲信号分离。在讲述理论依据之前,先思考以下几个问题:真实的数据训练总是存在以下几个问题:

①特征冗余情况,比如建立文档-词频矩阵过程中,"learn"和"study"两个特征,从VSM(计算文档向量间的相似度,Lucene评分机制由此推导而来)角度来看,两者独立,但是从语义角度看,是冗余的……

②特征强相关性,两个特征间具有很强的相关性,需要去除其中一个……

③训练样本数远小特征数,容易造成过拟合……

还有一类情况:在鸡尾酒宴会上,有n个嘉宾,在会场的不同角落里,布置n个麦克风。源信号是每个人的声音,n个麦克风接收到的信号混合声音,如何把声音还原分离出来?

以上两类大的情况,第一大类,涉及到数据降维,第二类涉及到盲信号分离。先谈第一类,关于理论上的深入论述,不探讨(能够搞理论创新的人,都是很少的),只说明个人理解。PCA的计算步骤:①计算各个特征维度的均值;②更新x = x - u,就是去均值化,让均值为0;③计算各个特征的variance④归一化处理:x = x / variance;⑤计算协方差矩阵(方阵)⑥计算协方差矩阵的特征值和特征向量,把特征值按照降序排列,依次对应特征vector,取前k个列特征向量;⑦把归一化处理后的矩阵数据投影到列特征向量,就是最终结果。整个过程非常简单,求协方差矩阵的特征向量就是最后理想的结果。理论依据:①最大方差理论②最小平方误差理论③坐标轴相关度理论。说白了,PCA就是找出所有两两相互正交的坐标轴(投影轴的方向向量,对应协方差矩阵的特征向量),这些坐标轴具有这样的特性,样本点在坐标轴上的投影(由于均值已经去零化,所以投影在轴上的点均值也为零)距离最远(均值为0的情况下,就是具有最高的方差,对应协方差矩阵的特征值)。这是从几何角度来理解,从数学角度理解,就是找出协方差矩阵的特征值(对角阵),按降序排列,取前k个对应的特征向量,剔除不重要的特征。关于PCA最经典的解读,可以观看吴恩达的公开课,或者下载讲义和学习笔记。按照第一种理论来理解:

在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好 。因此我们认为,最好的k为特征是将n为样本点转换成k为后,每一维上的样本方差都很大。比如下图有5个样本点:(已经做过预处理,均值为0,特征方差归一)

下面将样本点投影到某一维上,这里用一条过原点的直线表示(前处理的过程实质是将原点移到样本点的中心点)。

假设我们选择两条不同的直线作投影,那么左右两条中哪个好呢?根据我们之前的方差最大化理论,左边的好,因为投影后样本点之间的方差最大。这里先解释一下投影的概念:

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值