笔记本电脑本地部署ollama大模型(显存不足调用CUDA Unified Memory方法)

软硬件:win11,NVIDIA GeForce RTX 3050 显存4g

一.ollama模型最低要求

1. Llama 3.1 (8B) 模型

  • GPU: 至少需要 1 张具有 16 GB 显存的 GPU(例如 NVIDIA Tesla V100 或 A100)。
  • CPU: 高性能的多核处理器(例如 Intel Xeon 或 AMD Ryzen)。
  • 内存: 最少 32 GB 的系统内存。
  • 存储: 需要大约 4.7 GB 的存储空间用于模型文件。

2. Llama 3.1 (70B) 模型

  • GPU: 至少需要 4 张具有 40 GB 或更高显存的 GPU(例如 NVIDIA A100 或 H100)。可以采用分布式计算方式来处理。
  • CPU: 高性能的多核处理器(例如 Intel Xeon 或 AMD EPYC),推荐使用多台服务器。
  • 内存: 至少 256 GB 的系统内存。
  • 存储: 需要大约 96 GB 的存储空间用于模型文件,建议使用高速 SSD。

3. Llama 3.1 (405B) 模型

  • GPU: 需要大规模的 GPU 集群,通常包括数十张具有 80 GB 或更多显存的 GPU(例如 NVIDIA A100 或 H100)。需要专门的硬件配置和高性能计算设施。
  • CPU: 高性能的多核处理器(例如 Intel Xeon 或 AMD EPYC),并且需要多个处理节点来支持分布式计算。
  • 内存: 至少 1 TB 或更多的系统内存。
  • 存储: 需要几百 GB 到 TB 级别的存储空间,建议使用高速 SSD 或分布式存储系统。

对于我们普通人的电脑,ollama模型的部署,你至少拥有一张有显存的n系显卡,再者就是电脑内存一定要在16g及以上

我的硬件信息,有两张8g的内存,一张英伟达显存为4g的3050显卡

查看内存信息:wmic memorychip get capacity, devicelocator, manufacturer, memorytype, speed
查看GPU的信息:nvidia-smi

二.cuda和cudnn的安装(解决显存不足的办法)

CUDA Unified Memory: CUDA 提供了统一内存(Unified Memory),允许 GPU 和 CPU 共享内存空间。这可以使得内存需求超出 GPU 显存时,数据可以存储在主机内存中并在需要时传输到 GPU。

1.cuda的选择与安装

1.打开NVIDIA控制面板>>>系统信息>>>组件

就这个:

可以看到我的是nvduda64.dll NVIDIA cuda 12.6.41 driver

2.进官网,选择相应的cuda,选择版本应该=<自己的版本NVIDIA cuda 12.6.41 driver:CUDA Toolkit Archive | NVIDIA Developer

3.选择本地exe安装

4.双击安装包,自定义设置,勾选组件:

继续点下一步

点击关闭,安装结束

验证:cmd输入

最高版本:nvidia-smi
当前版本:nvcc --version


结果:

2.cudnn的安装
网址:https://developer.nvidia.com/cudnn-downloads?target_os=Windows

多版本:cuDNN Archive | NVIDIA Developer

下载的是一个压缩包,解压至你想保存的位置,并将解压的目录中的bin目录添加到环境变量里的系统变量path里面

这是我解压的bin文件夹位置:

D:\app\cudnn\bin

验证是否成功:

找到你的这个目录,并将下面的变量添加到环境变量里的系统变量path里面

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\extras\demo_suite


打开cmd,分别输入

bandwidthTest.exe 
和
deviceQuery.exe


结果:

三.安装ollama

官网:Ollama

双击安装,默认会安到c盘,好像也没法改,但是看了一下也不是很大,大的是模型,待会会说怎么改模型的存储位置,install,等安装完:

它会自动启动

打开cmd,不用配置path啥的,输入下面两个代码看一下结果:

ollama

ollama list

OK啦

四.模型的选择和默认模型存储位置的更改

ollama官方提供的模型:llama3.1

小黄脸hugging face的模型(模型社区),有别人训练好的模型:https://huggingface.co/

模型的选择

1.更改模型下载位置

创建一个想要你想要保存模型的位置

添加系统环境变量

变量名:OLLAMA_MODELS

变量值:D:\app\OLLAMA_MODELS

2.ollama的模型下载

8b模型是我们目前能运行的最大模型

复制指令,cmd中输入,等下载完

上一步设置无误的话,下载文件会有在你的模型存储位置会有两个这样的文件

下载完后,它自己会启动,试着对话一下,还是很顺畅的

### pnpm 全局安装后无法使用的解决方案 当通过 `npm` 或其他工具全局安装 `pnpm` 后,发现运行 `pnpm` 命令时提示未找到该命令,通常是因为系统环境变量未正确配置或存在版本管理器(如 `nvm`)引起的冲突。 以下是可能的原因分析以及对应的解决方法: #### 1. **检查 npm 的全局安装路径** 如果使用 `npm` 进行全局安装,则可以通过以下命令获取全局模块的安装路径: ```bash npm config get prefix ``` 此处返回的结果即为全局模块的根目录位置。例如,在某些环境中可能会显示如下路径: ```plaintext D:\GlobalNodeModules ``` 需要确认此路径是否已添加到系统的环境变量中。如果没有,请手动将其加入 PATH 变量[^1]。 --- #### 2. **验证 pnpm 是否成功安装** 在执行任何操作之前,建议先验证 `pnpm` 是否已被正确安装并位于预期路径下: ```bash which pnpm # Linux/macOS 下使用 where pnpm # Windows 下使用 ``` 若上述命令未能定位到可执行文件,则说明安装失败或路径异常。 --- #### 3. **处理 nvm 导致的节点版本切换问题** 当使用 `nvm` 切换不同 Node.js 版本时,原有的全局包会被卸载或丢失访问权限。这是因为每次切换都会创建新的独立环境,而旧版中的全局依赖不会自动迁移至新版。 对于这种情况,有以下两种常见做法: - 方法一:在每次切换完成后重新安装所需的全局工具: ```bash npm install -g pnpm ``` - 方法二:考虑使用 `corepack` 替代传统的方式管理工具链。Corepack 是官方推荐的一种机制,用于统一管理 Yarn 和 PNPM 等构建工具。启用 Corepack 并设置默认版本即可避免频繁的手动重装: ```bash corepack enable # 开启支持 corepack prepare pnpm@latest --activate # 设置最新稳定版作为默认 ``` --- #### 4. **排查文件目录合法性错误** 如果尝试通过 `yarn` 安装 `pnpm` 而遭遇 “文件目录不合法” 错误,可能是目标平台上的特定限制所致。此时建议改回标准流程——借助 `npm` 来完成初始化工作: ```bash npm install -g pnpm ``` 注意观察终端反馈日志,确保整个过程顺利完成并无报错信息出现[^2]。 --- #### 5. **测试新安装后的可用状态** 成功修复之后,再次输入简单的调用语句来检验功能恢复情况: ```bash pnpm --version ``` 输出具体的版本号则表明一切正常;反之仍需进一步诊断潜在隐患所在。 --- ### 总结 综上所述,针对因多种因素引发的 `pnpm` 失效现象可以从调整环境配置、适配多版本共存需求等方面入手加以改善。具体实施过程中务必保持耐心细致的态度逐一排除干扰项直至彻底解决问题为止。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值