分析化学中的数字可以分为两种:一种为非测量所得的自然数,例如,测量次数、试样份数等;另一种为测量所得,即测量值或者数据计算的结果,其数据位数多少应与分析方法的准确度及其仪器的精密度相适应。
所谓的有效数字是指实际能测量的数字,测量数据不仅仅表示数量的大小,且能反映测量的不确定程度。所得数据的最后一位可能有上下一个单位的误差,我们将其称为不确定数字。有效数字包括所有的准确数字和最后一位不确定数字。分析实验中记录数据,有效数字的位数应根据测定方法和所用仪器的精确度来确定,只有一位不确定的数字,既不能夸大,也不能缩小测量的准确性,有效数字的位数反映了测量和结果的准确程度,绝不能随意增加或者减少。
1.1 有效数字的表示
为了取得准确的分析结果,不仅要准确地测量,而且还要正确地记录和计算。即记录的数字不仅表示数量的大小,而且要正确地反映测量的精确程度。例如,由于分析天平的感量是±0.000 1 g,在读出和记录质量时应该保留至小数点后面的第4位数字。若标定某溶液的浓度,用分析天平称取了基准物质,应记录为1.001 0 g,这一数值中,1.001是准确的,最后一位数字(0)是可疑的,可能有上下一个单位的误差。由于不确定数字所表示的量是客观存在的,仅因为受到仪器、量器的刻度精细程度的限制,在估计时受到观测者主观因素的影响而不能对它准确认定,因此它仍然是一位有效数字。在读出和记录质量时应该保留至小数点后面的第4位数字。
因此,有效数字是由全部准确数字和最后一位(只能是一位)不确定数字组成,它们共同决定了有效数字的位数。
有效数字位数的多少反映了测量的准确度,例如,用分析天平称取1.001 0 g试样,一般情况下称量的绝对误差为±0.000 2 g,那么相对误差为: 若用台秤称取试样1.0g,称量的绝对误差为±0.2g,那么相对误差为:
有效数字位数的多少反映了测量的准确度,例如,用分析天平称取1.001 0 g试样,一般情况下称量的绝对误差为±0.000 2 g,那么相对误差为: 若用台秤称取试样1.0g,称量的绝对误差为±0.2g,那么相对误差为: