自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 【金融数据分析】用几何布朗运动模拟股票价格走势

摘要 本文介绍了几何布朗运动在金融领域的应用,重点探讨了如何使用几何布朗运动模型预测股票价格动态。文章首先回顾了几何布朗运动的理论发展历程,从巴舍利耶的早期贡献到伊藤清的随机微积分理论,再到布莱克-舒尔斯-默顿期权定价模型的应用。随后,通过Python代码示例展示了如何利用历史数据计算股票收益率和波动率参数,并定义几何布朗运动模拟函数,生成多条可能的未来股票价格路径。最终通过可视化结果,对比了模拟均值与实际收盘价的表现。

2025-06-12 10:12:52 381

原创 【金融数据分析】GARCH模型的基本原理与Python实现

【结果说明】上面的代码用于从已拟合的GARCH模型结果中获取最后一期的条件方差以及模型的参数。通过这一行代码,将这些参数的值分别赋给对应的变量。获取最后一期的条件方差是为了在模型的条件下计算下一期的波动率,从代码运行结果可以看到,通过这些参数,我们计算出了下一期的波动率约为1.102。【结果说明】在上面的代码中,在result.forecast()方法中,horizon参数表示你要预测的未来时期的数量,即预测的时间跨度。进行未来波动率的预测:使用模型的参数和最后一期的条件方差,可以进行未来波动率的预测。

2025-06-04 11:22:52 934

原创 【金融数据分析】ARCH模型的基本原理与实现

摘要:本文介绍了ARCH模型的基本原理及其在金融时间序列分析中的应用。通过棉花期货价格数据示例,展示了如何使用Python的arch库实现ARCH(1)模型,包括数据预处理、模型拟合和结果可视化。文章重点阐述了异方差性的概念及其在金融数据中的表现,并详细解释了ARCH模型参数的含义。结果表明ARCH模型能有效捕捉金融时间序列的波动性特征,为后续的GARCH模型学习奠定了基础。

2025-05-28 11:04:34 853

原创 【金融数据分析】用Python开发一个技术分析面板

本文介绍了如何使用Streamlit和Python库(如AKShare、TA-Lib等)构建一个简单的技术分析面板,以便更便捷地进行金融数据分析。该面板允许用户通过下拉菜单选择期货品种,并设置起止日期以获取历史行情数据。用户还可以选择不同的技术指标(如MACD、布林带、RSI),并通过TA-Lib进行计算。最后,面板将历史行情的K线图和技术指标的计算结果进行可视化展示。通过这种方式,用户可以快速获取并分析金融数据,而无需每次重新运行代码。

2025-05-21 14:37:26 949

原创 【金融数据分析】用Python和TA-Lib计算技术指标

TA-Lib(Technical Analysis Library)是一个开源技术分析库,提供150多种技术指标,涵盖趋势、波动性、动能和周期分析等领域,适用于股票、期货和外汇市场。文章介绍了如何使用TA-Lib计算和可视化常见技术指标,包括均线(MA)、布林带(Bollinger Bands)和相对强弱指数(RSI)。均线用于平滑价格数据,布林带衡量价格波动性和趋势反转,RSI则用于识别超买和超卖情况。通过Python代码示例,展示了如何计算这些指标并绘制图表,帮助交易者分析市场动态和制定交易策略。

2025-05-14 15:26:54 1331

原创 【金融数据分析】用Python+TA-Lib识别K线形态

K线图形态是一种在技术分析中用于分析金融市场价格走势的方法,它通过观察K线图表中的不同K线形态来预测价格趋势的变化。这些K线形态通常以不同的名称和特定的形状来表示,如"多头吞没"、“倒锤头”、"早晨之星"等,每种形态都有不同的含义和预测能力。识别K线图形态对于交易者来说是一项重要的技能,它可以用来制定交易决策和预测市场趋势的转折点。为了进行实验,我们这次使用PVC期货连续合约的历史行情数据,这次我们选择2020年1月1日至2022年12月31日的数据。然后使用TA-Lib识别“早晨之星”和“锤头”形态。

2025-05-08 10:06:46 781

原创 【金融数据分析】使用Python与Pelt算法检测价格趋势变化

Pelt(Pruned Exact Linear Time)是一种变点检测算法,用于发现时间序列数据中的结构性变化点或突变点。

2025-05-06 10:32:16 430

原创 【金融数据分析】用Python绘制K线图,并添加均线和成交量

通常,较大的成交量可能伴随着价格趋势的延续,而较小的成交量可能伴随着价格趋势的转折。K线图提供了关于特定时间段内市场开盘价、收盘价、最高价和最低价的信息,以及价格趋势的展示。通过观察K线图,可以识别市场的支持和阻力水平,趋势的转折点以及价格的波动情况,从而制定更明智的交易策略。均线是一种平滑价格走势的方式,通过计算一段时间内的价格平均值,它可以减少价格波动的噪音,使趋势更加清晰。在这个示例中,我们使用了Plotly的Candlestick图来绘制K线图,传递了日期、开盘价、最高价、最低价和收盘价的数据。

2025-04-24 15:25:48 978

原创 金融数据分析——实现波动率的计算

实现波动率(Realized Volatility)是一种用于测量资产价格波动性的指标,它基于已经发生的价格变动来计算波动性,与未来预测无关。它通常用于评估资产或市场的风险水平。

2025-04-21 16:10:45 443 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除