金融数据分析——实现波动率的计算

实现波动率(Realized volatility)是指根据过去的价格数据计算出的某种资产的实际波动率,用于衡量资产的价格波动程度。实现波动率是一种重要的金融指标,用于风险管理、期权定价和其他金融分析中。
实现波动率(Realized Volatility)是一种用于测量资产价格波动性的指标,它基于已经发生的价格变动来计算波动性,与未来预测无关。它通常用于评估资产或市场的风险水平。
实现波动率的原理:
实现波动率的原理基于以下思想:资产价格在不同时间点的波动越大,其波动率越高。它通过测量一定时间段内资产价格的实际变动来确定波动性水平。
实现波动率的计算通常包括以下步骤:

  1. 选择时间段:确定要计算实现波动率的时间窗口。常见的时间窗口包括每日、每周或每月。
  2. 计算价格变化:在所选时间窗口内,计算每个时间点的价格变化。通常,这是当前时间点价格与前一个时间点价格的差值。
  3. 平方价格变化:将每个价格变化的值平方。这是因为波动率是基于价格变化的方差计算的。
  4. 求和:将平方价格变化的值相加。
  5. 取平方根:为了获得标准差或波动率,通常会取平方根。
    要计算股价的月度实现波动率,我们可以使用 Python 中的 Pandas 库来处理这个任务。首先,我们继续使用已经保存好的“历史行情数据.xlsx”文件,然后计算每月的实现波动率。代码如下:
#读取我们要用的历史行情数据文件
df = pd.read_excel('历史行情数据.xlsx')

#保留要用的字段
df = df[['日期', '收盘']]

#转换日期格式并设为index
df['日期'] = pd.to_datetime(df['日期'])
df.set_index('日期', inplace=True)

#用对数收益来描述价格变动
df['对数收益'] = np.log(df['收盘']/df['收盘'].shift(1))

#定义一个计算实现波动率的函数
def realized_volatility(x): 
    return np.sqrt(np.sum(x**2))

#将数据按照月度重组,并计算实现波动率
df_rv = ( 
    df.groupby(pd.Grouper(freq="M")) 
    .apply(realized_volatility) 
    .rename(columns={"对数收益": "实现波动率"})
)

#检查结果
df_rv.tail(12)

运行这段代码,会得到如下所示的结果。

日期收盘实现波动率
2022-01-3173.3898500.088663
2022-02-2865.7981200.068900
2022-03-3171.2940540.133816
2022-04-3069.0086300.123565
2022-05-3163.5124320.068098
2022-06-3065.6530190.073393
2022-07-3162.9138190.074279
2022-08-3159.1979670.070498
2022-09-3056.9110390.072070
2022-10-3144.3657270.070144
2022-11-3054.1251980.140845
2022-12-3161.6285760.092911

在上面的代码中,核心的部分是定义了一个名为realized_volatility的函数,该函数将用于计算实现波动率。该函数接受一个时间段内的对数收益数据,并返回这段时间内的实现波动率。然后使用groupby方法,按照月度(pd.Grouper(freq=“M”))将数据框进行分组。然后,对每个月的对数收益数据应用 realized_volatility 函数来计算实现波动率,并将结果重命名为 “实现波动率”。最后,打印出最近12个月的实现波动率数据,以查看结果。

参考书目:
北京大学出版社 《巧用AI大模型轻松学会Python金融数据分析》
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值