实现波动率(Realized volatility)是指根据过去的价格数据计算出的某种资产的实际波动率,用于衡量资产的价格波动程度。实现波动率是一种重要的金融指标,用于风险管理、期权定价和其他金融分析中。
实现波动率(Realized Volatility)是一种用于测量资产价格波动性的指标,它基于已经发生的价格变动来计算波动性,与未来预测无关。它通常用于评估资产或市场的风险水平。
实现波动率的原理:
实现波动率的原理基于以下思想:资产价格在不同时间点的波动越大,其波动率越高。它通过测量一定时间段内资产价格的实际变动来确定波动性水平。
实现波动率的计算通常包括以下步骤:
- 选择时间段:确定要计算实现波动率的时间窗口。常见的时间窗口包括每日、每周或每月。
- 计算价格变化:在所选时间窗口内,计算每个时间点的价格变化。通常,这是当前时间点价格与前一个时间点价格的差值。
- 平方价格变化:将每个价格变化的值平方。这是因为波动率是基于价格变化的方差计算的。
- 求和:将平方价格变化的值相加。
- 取平方根:为了获得标准差或波动率,通常会取平方根。
要计算股价的月度实现波动率,我们可以使用 Python 中的 Pandas 库来处理这个任务。首先,我们继续使用已经保存好的“历史行情数据.xlsx”文件,然后计算每月的实现波动率。代码如下:
#读取我们要用的历史行情数据文件
df = pd.read_excel('历史行情数据.xlsx')
#保留要用的字段
df = df[['日期', '收盘']]
#转换日期格式并设为index
df['日期'] = pd.to_datetime(df['日期'])
df.set_index('日期', inplace=True)
#用对数收益来描述价格变动
df['对数收益'] = np.log(df['收盘']/df['收盘'].shift(1))
#定义一个计算实现波动率的函数
def realized_volatility(x):
return np.sqrt(np.sum(x**2))
#将数据按照月度重组,并计算实现波动率
df_rv = (
df.groupby(pd.Grouper(freq="M"))
.apply(realized_volatility)
.rename(columns={"对数收益": "实现波动率"})
)
#检查结果
df_rv.tail(12)
运行这段代码,会得到如下所示的结果。
日期 | 收盘 | 实现波动率 |
---|---|---|
2022-01-31 | 73.389850 | 0.088663 |
2022-02-28 | 65.798120 | 0.068900 |
2022-03-31 | 71.294054 | 0.133816 |
2022-04-30 | 69.008630 | 0.123565 |
2022-05-31 | 63.512432 | 0.068098 |
2022-06-30 | 65.653019 | 0.073393 |
2022-07-31 | 62.913819 | 0.074279 |
2022-08-31 | 59.197967 | 0.070498 |
2022-09-30 | 56.911039 | 0.072070 |
2022-10-31 | 44.365727 | 0.070144 |
2022-11-30 | 54.125198 | 0.140845 |
2022-12-31 | 61.628576 | 0.092911 |
在上面的代码中,核心的部分是定义了一个名为realized_volatility的函数,该函数将用于计算实现波动率。该函数接受一个时间段内的对数收益数据,并返回这段时间内的实现波动率。然后使用groupby方法,按照月度(pd.Grouper(freq=“M”))将数据框进行分组。然后,对每个月的对数收益数据应用 realized_volatility 函数来计算实现波动率,并将结果重命名为 “实现波动率”。最后,打印出最近12个月的实现波动率数据,以查看结果。
参考书目:
北京大学出版社 《巧用AI大模型轻松学会Python金融数据分析》