1. Canny介绍
Canny算子与Marr(LoG)边缘检测方法类似,也属于是先平滑后求导数的方法。John Canny研究了最优边缘检测方法所需的特性,给出了评价边缘检测性能优劣的三个指标:
1 好的信噪比,即将非边缘点判定为边缘点的概率要低,将边缘点判为非边缘点的概率要低;
2 高的定位性能,即检测出的边缘点要尽可能在实际边缘的中心;
3 对单一边缘仅有唯一响应,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制。
2. Canny检测实现过程
第一步:灰度化
第二步:高斯滤波
首先生成二维高斯分布矩阵:
然后与灰度图像进行卷积实现滤波:
第三步:计算梯度值和方向
求变化率时,对于一元函数,即求导;对于二元函数,求偏导。 数字图像处理中,用一阶有限差分近似求取灰度值的梯度值(变化率)。
(即:使差商(Δf/Δx)近似取代微商(∂f/∂x)。求灰度的变化率,分别取x和y方向上相邻像素做差,代替求取x和y
方向一阶偏导) 。
其中f为图像灰度值,P代表X方向梯度幅值,Q代表Y方向 梯度幅值,M是该点幅值,Θ是梯度方向,也就是角度。
注:图像梯度方向与边缘方向互相垂直:
第四步:非极大值抑制(NMS)
通俗意义上是指寻找像素点局部最大值。沿着梯度方向,比较它前面和后面的梯度值。在沿其方向上邻域的梯度幅值最大,则保留;否则,抑制。
可以进行插值来提高结果。
第五步:双阈值的选取、边缘连接
选取高阈值T H 和低阈值T L ,比率为2:1或3:1。(一般取TH=0.3或0.2, TL=0.1)
取出非极大值抑制后的图像中的最大梯度幅值,重新定义高低阈值。即:T H ×Max,T L ×Max 。(当然可以自己给定)
将小于TL 的点抛弃,赋0;将大于T H 的点立即标记(这些点就是边缘点),赋1。
将大于TL ,小于TH 的点使用8连通区域确定(即:只有与TH像素连接时才会被接受,成为边缘点,赋1) 。
3. Canny检测Python实现
具体实现略有不同,例如:
高斯矩阵的实现过程、梯度幅值的实现过程、非极大值抑制的角度选取(可以选0,45,90,135)、边缘检测的实现过程。
#-*- coding: utf-8 -*-
"""Created on Thu Dec 7 21:12:41 2017
@author: L.P.S"""
importmatplotlib.pyplot as pltimportnumpy as npimportmath
img= plt.imread('G:\\360downloads\\lps.png')
sigma1= sigma2 = 1sum=0
gaussian= np.zeros([5, 5])for i in range(5):for j in range(5):
gaussian[i,j]= math.exp(-1/2 * (np.square(i-3)/np.square(sigma1) #生成二维高斯分布矩阵+ (np.square(j-3)/np.square(sigma2)))) / (2*math.pi*sigma1*sigma2)
sum= sum +gaussian[i, j]
gaussian= gaussian/sum#print(gaussian)
defrgb2gray(rgb):return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])#step1.高斯滤波
gray =rgb2gray(img)
W, H=gray.shape
new_gray= np.zeros([W-5, H-5])for i in range(W-5):for j in range(H-5):
new_gray[i,j]= np.sum(gray[i:i+5,j:j+5]*gaussian) # 与高斯矩阵卷积实现滤波#plt.imshow(new_gray, cmap="gray")
#step2.增强 通过求梯度幅值
W1, H1 =new_gray.shape
dx= np.zeros([W1-1, H1-1])
dy= np.zeros([W1-1, H1-1])
d= np.zeros([W1-1, H1-1])for i in range(W1-1):for j in range(H1-1):
dx[i,j]= new_gray[i, j+1] -new_gray[i, j]
dy[i,j]= new_gray[i+1, j] -new_gray[i, j]
d[i, j]= np.sqrt(np.square(dx[i,j]) +np.square(dy[i,j])) # 图像梯度幅值作为图像强度值#plt.imshow(d, cmap="gray")
#setp3.非极大值抑制 NMS
W2, H2 =d.shape
NMS=np.copy(d)
NMS[0,:]= NMS[W2-1,:] = NMS[:,0] = NMS[:, H2-1] =0for i in range(1, W2-1):for j in range(1, H2-1):if d[i, j] ==0:
NMS[i, j]=0else:
gradX=dx[i, j]
gradY=dy[i, j]
gradTemp=d[i, j]#如果Y方向幅度值较大
if np.abs(gradY) >np.abs(gradX):
weight= np.abs(gradX) /np.abs(gradY)
grad2= d[i-1, j]
grad4= d[i+1, j]#如果x,y方向梯度符号相同
if gradX * gradY >0:
grad1= d[i-1, j-1]
grad3= d[i+1, j+1]#如果x,y方向梯度符号相反
else:
grad1= d[i-1, j+1]
grad3= d[i+1, j-1]#如果X方向幅度值较大
else:
weight= np.abs(gradY) /np.abs(gradX)
grad2= d[i, j-1]
grad4= d[i, j+1]#如果x,y方向梯度符号相同
if gradX * gradY >0:
grad1= d[i+1, j-1]
grad3= d[i-1, j+1]#如果x,y方向梯度符号相反
else:
grad1= d[i-1, j-1]
grad3= d[i+1, j+1]
gradTemp1= weight * grad1 + (1-weight) *grad2
gradTemp2= weight * grad3 + (1-weight) *grad4if gradTemp >= gradTemp1 and gradTemp >=gradTemp2:
NMS[i, j]=gradTempelse:
NMS[i, j]=0#plt.imshow(NMS, cmap = "gray")
#step4. 双阈值算法检测、连接边缘
W3, H3 =NMS.shape
DT=np.zeros([W3, H3])#定义高低阈值
TL = 0.2 *np.max(NMS)
TH= 0.3 *np.max(NMS)for i in range(1, W3-1):for j in range(1, H3-1):if (NMS[i, j]
DT[i, j]=0elif (NMS[i, j] >TH):
DT[i, j]= 1
elif ((NMS[i-1, j-1:j+1] < TH).any() or (NMS[i+1, j-1:j+1]).any()or (NMS[i, [j-1, j+1]]
DT[i, j]= 1plt.imshow(DT, cmap= "gray")
4. 实验结果
原图 双阈值:0.1*max, 0.3*max 双阈值:0.2*max, 0.3*max
参考: