需求:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
此题的突破口在台阶数;台阶数不一样,结果就不一样;由台阶数来找规律。 台阶数 跳法
1 1
2 2
3 4
4 8
5 16
6 32
...... ......
通过分析台阶数,可以看出当台阶数为n时,跳法数为前两个之和,设跳法数为函数f(n),则有:
这是一个一个斐波那切数列,所以转化为求解斐波那切数列问题
实现代码: import java.util.Scanner; public class Solution { public static int f(int n) { if(n<2){ return n; }else{ return 2*f(n-1); } } public static void main(String[] args) { System.out.println("请输入台阶数:"); Scanner s=new Scanner(System.in); int n; n=s.nextInt(); System.out.println("跳法数为:"); System.out.println(f(n)); } }
分析:
首先,当位数为0时返回值为0;位数为1时返回1;因为他们是起始值;
所以由以上可得,大于等于3的情况下,当前位数的值
输出示例为:
欢迎大家留言讨论!