【Pandas】pandas DataFrame floordiv

Pandas2.2 DataFrame

Binary operator functions

方法描述
DataFrame.add(other)用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.add(other[, axis, level, fill_value])用于执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素加法操作
DataFrame.sub(other[, axis, level, fill_value])用于执行逐元素的减法操作
DataFrame.mul(other[, axis, level, fill_value])用于执行逐元素的乘法操作
DataFrame.div(other[, axis, level, fill_value])用于执行逐元素的除法操作
DataFrame.truediv(other[, axis, level, …])用于执行逐元素的真除法操作
DataFrame.floordiv(other[, axis, level, …])用于执行逐元素的地板除法操作

pandas.DataFrame.floordiv()

pandas.DataFrame.floordiv() 方法用于执行逐元素的地板除法操作。地板除法是指使用整数除法,结果向下取整为最接近的整数。这个方法可以用于两个 DataFrame 之间的除法,也可以用于 DataFrame 和一个标量之间的除法。下面是对参数的详细描述:

  • other: 可以是另一个 DataFrame、Series、Index、常量或可广播到相同形状的数组。
  • axis: 指定沿哪个轴进行操作。0'index' 表示沿行操作,1'columns' 表示沿列操作。默认为 'columns'
  • level: 如果索引是多重索引(MultiIndex),则可以指定沿哪个级别进行操作。默认为 None
  • fill_value: 如果遇到缺失值(NaN),可以使用这个值来填充。默认为 None
示例

假设我们有两个 DataFrame:

import pandas as pd

df1 = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

df2 = pd.DataFrame({
    'A': [1, 1, 1],
    'B': [2, 2, 2]
})
示例 1: DataFrame 与 DataFrame 之间的地板除法
result = df1.floordiv(df2)
print(result)

输出:

   A  B
0  1  2
1  2  2
2  3  3
示例 2: DataFrame 与标量之间的地板除法
result = df1.floordiv(2)
print(result)

输出:

   A  B
0  0  2
1  1  2
2  1  3
示例 3: 使用 fill_value 处理缺失值

假设 df2 有一个缺失值:

df2.iloc[0, 0] = None  # 设置 df2 中的一个值为 NaN
result = df1.floordiv(df2, fill_value=1)
print(result)

输出:

     A  B
0  1.0  2
1  2.0  2
2  3.0  3

在这个例子中,df2 中的第一个元素是 NaN,使用 fill_value=1 后,df1 中的对应元素 1 除以 1,结果仍然是 1

示例 4: 处理除以零的情况

如果 df2 中有零值,结果会是 inf-inf,但由于地板除法的结果是整数,实际结果会是 inf-inf 的整数表示形式(即 inf):

df2.iloc[1, 1] = 0  # 设置 df2 中的一个值为 0
result = df1.floordiv(df2)
print(result)

输出:

     A   B
0  1.0  2
1  2.0   inf
2  3.0  3

在这个例子中,df2 中的第二个元素是 0df1 中的对应元素 5 除以 0,结果是 inf

示例 5: 指定 axis 参数

假设我们有一个 DataFrame 和一个 Series,可以通过指定 axis 参数来控制除法操作的轴:

series_row = pd.Series([100, 200, 300], index=[0, 1, 2])
result_axis_0 = df1.floordiv(series_row, axis=0)
print("\nDataFrame 1 // Series (axis=0):")
print(result_axis_0)

series_col = pd.Series([10, 20], index=['A', 'B'])
result_axis_1 = df1.floordiv(series_col, axis=1)
print("\nDataFrame 1 // Series (axis=1):")
print(result_axis_1)

输出:

DataFrame 1 // Series (axis=0):
   A  B
0  0  0
1  0  0
2  0  0

DataFrame 1 // Series (axis=1):
   A  B
0  0  0
1  0  0
2  0  0

在这个例子中,df1 中的每个元素分别与 series_rowseries_col 中的对应元素进行地板除法操作。

总结

pandas.DataFrame.floordiv() 方法提供了一种灵活的方式来执行 DataFrame 与另一个对象(如 DataFrame、Series 或标量)的逐元素地板除法操作。通过 axis 参数可以指定操作的轴,通过 level 参数可以处理多级索引,通过 fill_value 参数可以填充缺失值。这对于数据处理和计算非常有用,特别是在处理缺失值和多级索引时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值