【Pandas】pandas DataFrame cummax

Pandas2.2 DataFrame

Computations descriptive stats

方法描述
DataFrame.abs()用于返回 DataFrame 中每个元素的绝对值
DataFrame.all([axis, bool_only, skipna])用于判断 DataFrame 中是否所有元素在指定轴上都为 True
DataFrame.any(*[, axis, bool_only, skipna])用于判断 DataFrame 中是否至少有一个元素在指定轴上为 True
DataFrame.clip([lower, upper, axis, inplace])用于截断(限制)DataFrame 中的数值
DataFrame.corr([method, min_periods, …])用于计算 DataFrame 中各列之间的相关系数矩阵(Correlation Matrix)
DataFrame.corrwith(other[, axis, drop, …])用于计算当前 DataFrame 的每一列(或行)与另一个 Series 或 DataFrame 中对应列的相关系数
DataFrame.count([axis, numeric_only])用于统计 DataFrame 中每列或每行的非空(非 NaN)元素数量
DataFrame.cov([min_periods, ddof, numeric_only])用于计算 DataFrame 中每对列之间的协方差
DataFrame.cummax([axis, skipna])用于计算 DataFrame 中每列或每行的累计最大值(cumulative maximum)

pandas.DataFrame.cummax()

pandas.DataFrame.cummax() 方法用于计算 DataFrame 中每列或每行的累计最大值(cumulative maximum)。该方法返回一个与原 DataFrame 形状相同的对象,每个位置上的值是到该位置为止所有元素的最大值。


参数说明:
  1. axis:{0 or ‘index’, 1 or ‘columns’}, default 0

    • 指定计算方向:
      • 0'index':按列计算(对每一列从上往下累计)
      • 1'columns':按行计算(对每一行从左往右累计)
  2. skipna:bool, default True

    • 如果为 True,则忽略 NaN 值;
    • 如果为 False,遇到 NaN 则结果也为 NaN。

示例代码 1:默认参数(按列累计最大值)
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'A': [1, 3, 2, 5, 4],
    'B': [10, 8, 6, 9, 7],
    'C': [5, 4, 3, 2, 1]
})

result = df.cummax()
print(result)
输出结果:
   A   B  C
0  1  10  5
1  3  10  5
2  3  10  5
3  5  10  5
4  5  10  5

示例代码 2:按行累计最大值(axis=1)
result = df.cummax(axis=1)
print(result)
输出结果:
    A   B   C
0   1  10  10
1   3   8   8
2   2   6   6
3   5   9   9
4   4   7   7

示例代码 3:包含 NaN 值时 skipna=False 的影响
df_with_nan = pd.DataFrame({
    'A': [1, 3, None, 5, 4],
    'B': [None, 8, 6, None, 7]
})

result = df_with_nan.cummax(skipna=False)
print(result)
输出结果:
     A    B
0  1.0  NaN
1  3.0  NaN
2  NaN  NaN
3  NaN  NaN
4  4.0  7.0

总结:
  • cummax() 是一种非常实用的方法,用于观察数据随时间或其他维度变化时的“历史峰值”。
  • 常用于金融、监控等场景中追踪最高记录。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值