Pandas2.2 DataFrame
Reindexing selection label manipulation
方法 | 描述 |
---|
DataFrame.add_prefix(prefix[, axis]) | 用于在 DataFrame 的行标签或列标签前添加指定前缀的方法 |
DataFrame.add_suffix(suffix[, axis]) | 用于在 DataFrame 的行标签或列标签后添加指定后缀的方法 |
DataFrame.align(other[, join, axis, level, …]) | 用于对齐两个 DataFrame 或 Series 的方法 |
DataFrame.at_time(time[, asof, axis]) | 用于筛选 特定时间点 的行的方法 |
DataFrame.between_time(start_time, end_time) | 用于筛选 指定时间范围内的数据行 的方法 |
DataFrame.drop([labels, axis, index, …]) | 用于从 DataFrame 中删除指定行或列的方法 |
DataFrame.drop_duplicates([subset, keep, …]) | 用于删除重复行的方法 |
DataFrame.duplicated([subset, keep]) | 用于检测 重复行 的方法 |
DataFrame.equals(other) | 用于比较两个 DataFrame 是否完全相等的方法 |
DataFrame.filter([items, like, regex, axis]) | 用于筛选列或行标签的方法 |
DataFrame.first(offset) | 用于选取 时间序列型 DataFrame 中从起始时间开始的一段连续时间窗口 的方法 |
DataFrame.head([n]) | 用于快速查看 DataFrame 前几行数据 的方法 |
pandas.DataFrame.head()
pandas.DataFrame.head([n])
是一个用于快速查看 DataFrame
前几行数据 的方法,默认返回前 5 行。它在数据分析和调试时非常有用,可以方便地观察数据结构和部分内容。
📌 方法签名
DataFrame.head(n=5)
🔧 参数说明:
参数 | 类型 | 说明 |
---|
n | 整数,默认为 5 | 要显示的前 n 行;若为负数,则返回除最后 -n 行外的所有内容 |
✅ 返回值:
- 返回一个新的
DataFrame
,包含原始数据的前 n
行。
🧪 示例代码:
示例 1:默认使用(显示前 5 行)
import pandas as pd
df = pd.DataFrame({
'A': range(1, 11),
'B': [x * 10 for x in range(1, 11)]
})
print("Original DataFrame:")
print(df)
print("\ndf.head():")
print(df.head())
输出结果:
Original DataFrame:
A B
0 1 10
1 2 20
2 3 30
3 4 40
4 5 50
5 6 60
6 7 70
7 8 80
8 9 90
9 10 100
df.head():
A B
0 1 10
1 2 20
2 3 30
3 4 40
4 5 50
示例 2:自定义显示前 3 行
print("\ndf.head(3):")
print(df.head(3))
输出结果:
df.head(3):
A B
0 1 10
1 2 20
2 3 30
示例 3:使用负数参数跳过最后 n 行
print("\ndf.head(-2):")
print(df.head(-2))
输出结果:
df.head(-2):
A B
0 1 10
1 2 20
2 3 30
3 4 40
4 5 50
5 6 60
6 7 70
7 8 80
🧠 应用场景:
- 快速查看数据集的结构与部分数据;
- 数据清洗前了解字段含义和格式;
- 调试时检查数据处理是否正确;
- 配合
.tail()
查看首尾数据变化。
⚠️ 注意事项:
- 不会修改原始
DataFrame
,而是返回新对象; - 默认显示 5 行,可通过参数
n
自定义; - 支持负数参数,表示排除最后若干行;
- 对大型数据集非常友好,仅加载少量数据便于查看。