【Pandas】pandas DataFrame bfill

Pandas2.2 DataFrame

Missing data handling

方法描述
DataFrame.fillna([value, method, axis, …])用于填充 DataFrame 中的缺失值(NaN)
DataFrame.backfill(*[, axis, inplace, …])用于**使用后向填充(即“下一个有效观测值”)来填补缺失值(NaN)**的方法
DataFrame.bfill(*[, axis, inplace, limit, …])用于**使用后向填充(即“下一个有效观测值”)来填补缺失值(NaN)**的方法

pandas.DataFrame.bfill()

pandas.DataFrame.bfill() 是一个用于**使用后向填充(即“下一个有效观测值”)来填补缺失值(NaN)**的方法。它与 backfill() 完全相同,也等价于 fillna(method='bfill'),但支持额外的参数如 limit_area


📌 方法签名
DataFrame.bfill(*, axis=None, inplace=False, limit=None, limit_area=None, downcast=<no_default>)

🔧 参数说明
参数类型说明
axis{0/'index', 1/'columns'},默认为 None指定填充方向:
- 0'index':按行方向(向下)填充
- 1'columns':按列方向(向右)填充
inplacebool,默认 False是否在原对象上修改
limitint,可选最多连续填充的 NaN 数量;若未指定,则全部填充
limit_area'inside''outside',可选控制填充区域:
- 'inside':仅填充被非空包围的 NaN 区域
- 'outside':填充边缘的 NaN
downcastdict'infer',可选控制是否尝试将结果转换为更小的数据类型(如 float64 → float32)

✅ 返回值
  • 返回一个新的 DataFrame,其中的 NaN 值被后向填充;
  • 如果 inplace=True,则返回 None,原始数据被修改。

🧪 示例代码及结果
示例 1:基本用法 - 行方向后向填充(axis=0)
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'A': [1, np.nan, 3, np.nan, 5],
    'B': [np.nan, 2, np.nan, 4, np.nan]
})

print("Original DataFrame:")
print(df)

# 使用 bfill 按行方向填充
df_bfilled = df.bfill()
print("\nAfter bfill():")
print(df_bfilled)
输出结果:
Original DataFrame:
     A    B
0  1.0  NaN
1  NaN  2.0
2  3.0  NaN
3  NaN  4.0
4  5.0  NaN

After bfill():
     A    B
0  1.0  2.0
1  3.0  2.0
2  3.0  4.0
3  5.0  4.0
4  5.0  NaN

注意最后一行 B 列仍为 NaN,因为没有后续值可用。


示例 2:限制最大填充数量(limit=1)
# 设置最多填充 1 个连续 NaN
df_limited = df.bfill(limit=1)
print("\nAfter bfill(limit=1):")
print(df_limited)
输出结果:
After bfill(limit=1):
     A    B
0  1.0  2.0
1  3.0  2.0
2  3.0  4.0
3  5.0  4.0
4  5.0  NaN

在这个例子中,每列最多只填充一个 NaN。


示例 3:按列方向填充(axis=1)
# 创建按列方向有 NaN 的 DataFrame
df_col = pd.DataFrame({
    'X': [1, 2, 3],
    'Y': [np.nan, 5, 6],
    'Z': [7, np.nan, 9]
})

print("Original Column-wise DataFrame:")
print(df_col)

# 按列方向填充
df_col_bfilled = df_col.bfill(axis=1)
print("\nAfter bfill(axis=1):")
print(df_col_bfilled)
输出结果:
Original Column-wise DataFrame:
   X    Y    Z
0  1  NaN  7.0
1  2  5.0  NaN
2  3  6.0  9.0

After bfill(axis=1):
   X    Y    Z
0  1  7.0  7.0
1  2  5.0  NaN
2  3  6.0  9.0

第一行 Y 列被 Z 列的值 7 填充。


示例 4:使用 limit_area='inside' 仅填充内部 NaN
# 构造包含边界和内部 NaN 的 DataFrame
df_limit_area = pd.DataFrame({
    'A': [np.nan, 2, np.nan, 4, np.nan],  # 边缘 NaN
    'B': [1, np.nan, 3, np.nan, 5]        # 内部 NaN
})

print("Original DataFrame with edge and internal NaNs:")
print(df_limit_area)

# 只填充被非空包围的 NaN(不填充边缘)
df_inside = df_limit_area.bfill(limit_area='inside')
print("\nAfter bfill(limit_area='inside'):")
print(df_inside)
输出结果:
Original DataFrame with edge and internal NaNs:
     A    B
0  NaN  1.0
1  2.0  NaN
2  NaN  3.0
3  4.0  NaN
4  NaN  5.0

After bfill(limit_area='inside'):
     A    B
0  NaN  1.0
1  2.0  3.0
2  4.0  3.0
3  4.0  5.0
4  NaN  5.0

可见只有中间的 NaN 被填充,而首尾的 NaN 没有被填充。


示例 5:使用 limit_area='outside' 仅填充边缘 NaN
# 仅填充边缘 NaN
df_outside = df_limit_area.bfill(limit_area='outside')
print("\nAfter bfill(limit_area='outside'):")
print(df_outside)
输出结果:
After bfill(limit_area='outside'):
     A    B
0  2.0  1.0
1  2.0  NaN
2  NaN  3.0
3  4.0  NaN
4  4.0  5.0

此时只填充了最前或最后的 NaN,中间的未填充。


示例 6:原地修改(inplace=True)
# 原地修改
df.bfill(inplace=True)
print("\nIn-place bfill (modified original):")
print(df)
输出结果(基于示例 1 的数据):
In-place bfill (modified original):
     A    B
0  1.0  2.0
1  3.0  2.0
2  3.0  4.0
3  5.0  4.0
4  5.0  NaN

🧠 应用场景
  • 时间序列数据处理:填补缺失的时间点数据;
  • 传感器或日志数据清洗:使用下一时刻的值进行插值;
  • 数据预处理:准备模型输入前去除 NaN;
  • 控制填充范围:通过 limit_area 精确控制填充哪些位置;
  • 链式调用中清理数据:如 df.dropna().bfill()

⚠️ 注意事项
  • bfill()backfill() 完全等价;
  • 默认按行方向(axis=0)填充;
  • 支持 limit_area,这是 backfill() 所没有的功能;
  • 若无后续有效值,则无法填充;
  • limit 控制连续填充的最大数量;
  • 不会自动排序索引,建议先排序以获得预期效果;
  • 推荐结合 fillna()ffill() 等方法一起使用以满足不同需求;
  • 仅对 NaN 生效,不会处理 None 或其他空值。

✅ 总结对比
方法是否支持 limit_area是否推荐使用
bfill()✅ 是✅ 推荐
backfill()❌ 否✅ 推荐(功能相同)
fillna(method='bfill')✅ 是(通过 method✅ 推荐(更通用)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值