【AIGC调研系列】Transformer原理

Transformer原理详解涉及多个方面,包括其基本架构、注意力机制、在不同领域的应用以及对其性能的改进和理解。以下是基于我搜索到的资料进行的详细解释。

Transformer基本架构

Transformer模型是一种完全基于注意力机制的神经网络架构,它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)结构[2]。这种设计使得Transformer能够并行处理数据,显著提高了训练速度和效率。Transformer的核心是自注意力机制(Self-Attention),这一机制允许模型在处理序列数据时,对序列中的每个元素分配不同的注意力权重,从而捕捉到元素之间的复杂关系[5]。

注意力机制

自注意力机制是Transformer的核心,它通过计算序列内各元素之间的相似度来分配注意力权重。这些权重决定了模型在序列中不同位置的关注程度。具体来说,对于序列中的每一个元素,模型都会计算它与其他所有元素的关系,并根据这些关系分配相应的注意力权重[2]。这种方法使得Transformer能够有效处理长距离依赖问题,这是传统RNN和LSTM等模型难以解决的问题。

应用领域

Transformer模型因其强大的性能和高效的训练过程,在多个领域都取得了显著的应用成果。在自然语言处理(NLP)领域,Transformer被广泛应用于机器翻译、文本摘要、情感分析等任务,并且在这些任务上取得了前所未有的成绩[2][3]。此外,Transformer也被成功应用于计算机视觉领域,通过引入局部注意力机制和金字塔结构等改进,提高了模型在图像识别、目标检测等任务上的性能[5]。

性能改进与理解

尽管Transformer模型已经取得了巨大的成功,但研究人员仍在不断探索如何进一步提高其性能和理解其内部工作机制。例如,通过引入更高效的注意力机制和结合卷积网络,可以减少计算成本并提高模型的泛化能力[9]。此外,通过对Transformer模型进行深入分析,研究人员发现模型能够自动学习到源代码的结构信息,这为理解模型内部工作机制提供了新的视角[18]。

结论

Transformer模型以其独特的架构和强大的性能,在多个领域都展现出了巨大的潜力。通过不断的改进和深入的研究,我们不仅能够提高模型的性能,还能够更好地理解其内部工作机制,为未来的研究和发展奠定坚实的基础。

Transformer模型中自注意力机制的具体工作原理是什么?

Transformer模型中自注意力机制的具体工作原理可以从多个角度进行解释,结合我搜索到的资料,我们可以得出以下详细解释:

  1. 基本概念:自注意力机制(Self-Attention)允许模型在处理输入数据时,对每个元素(token)分配不同的权重,以强调或抑制某些信息的重要性。这种机制使得模型能够捕捉到输入数据中的长距离依赖关系[31]。
  2. 工作流程:在Transformer模型中,自注意力机制通过计算输入序列中每个元素(token)的查询(Query)、键(Key)和值(Value)。这些计算基于元素之间的相似性,通常使用点积来实现。然后,通过应用softmax函数来归一化这些点积结果,生成注意力权重。最后,将这些权重与值相乘,并将结果相加,以得到每个元素的新表示[32]。
  3. 多头注意力:为了进一步增强模型的学习能力,Transformer模型采用了多头注意力机制。这意味着原始的自注意力机制被复制多次,并且每个副本都会独立地学习不同的表示子空间。这样,模型可以从多个维度捕捉输入数据的信息[31]。
  4. 效率问题:尽管自注意力机制非常强大,但它也带来了计算上的挑战,因为其时间复杂度和空间复杂度都是二次的。为了解决这个问题,一些研究提出了替代方案,如使用随机对齐矩阵代替传统的点积自注意力[33],或者通过引入焦点自注意力机制来减少计算负担,同时保持对短距离和长距离依赖的有效捕捉[34][35]。
  5. 因果解释:自注意力机制还可以被解释为一种估计给定输入序列的结构方程模型的方法。这种结构方程模型可以被视为输入符号下的因果结构。通过计算最深层注意力层中相应表示之间的偏相关,可以估计输入符号之间的条件独立性关系,从而学习输入序列的因果结构[38]。
  6. 优化和改进:为了提高Transformer模型的性能和效率,研究者们提出了多种优化策略。例如,Momentum Transformer通过引入动量概念来改善线性变换器的准确性和训练效率,同时保持线性的内存和计算复杂度[39]。此外,还有研究提出了无需点积自注意力的Transformer变体,通过学习位置偏差来替代传统的自注意力机制,从而显著提高了效率[36]。

Transformer模型中的自注意力机制通过计算输入序列中各个元素的注意力权重来捕捉长距离依赖关系,其核心思想是让模型能够根据输入数据中元素之间的相互作用动态地调整每个元素的重要性。尽管存在计算效率的问题,但通过各种优化和改进策略,自注意力机制仍然是当前深度学习领域的一个重要且强大的工具。

如何通过改进Transformer模型的注意力机制来提高其在自然语言处理任务上的性能?

通过改进Transformer模型的注意力机制来提高其在自然语言处理任务上的性能,可以从以下几个方面进行:

  1. 自适应注意力跨度:引入一种新的自注意力机制,能够学习其最优的注意力跨度。这种方法可以显著扩展Transformer使用的最大上下文大小,同时控制其内存占用和计算时间[41]。这对于处理长序列数据尤为重要,如字符级别的语言建模。
  2. 多尺度注意力可视化:通过开发开源工具,实现对Transformer模型中注意力机制的多尺度可视化。这有助于解释模型如何为不同的输入元素分配权重,从而提高模型的可解释性[42]。这种可视化工具可以帮助检测模型偏差、定位相关的注意力头,并将神经元与模型行为链接起来。
  3. 平均注意力网络:在解码器部分替换原始的自注意力网络,使用平均注意力网络。这种方法通过引入平均层和门控层来增强提出的注意力网络的表达能力,使得神经Transformer在解码时速度提升四倍以上,而几乎不损失训练时间和翻译性能[43]。
  4. 概率注意力键:通过替换Transformer中的冗余头部,使用高斯混合模型的混合注意力键(Transformer-MGK),每个注意力头可以更有效地关注输入序列的不同部分。这种方法加速了训练和推理过程,减少了参数数量和计算量,同时在各种任务上实现了与传统Transformer相当或更好的准确率[44]。
  5. 注意力校准:通过引入掩码扰动模型自动评估每个输入对模型输出的贡献,并增加对不可或缺令牌的关注权重。这种方法在较低层使注意力权重更加均匀,以收集多种信息,在较高层则更集中于特定输入[46]。
  6. 可学习的稀疏注意力:提出了一种高效的Transformer变体,称为Smart Bird,它通过计算稀疏自注意力而不是密集自注意力来处理长序列。这种方法首先计算一个低维Transformer的草图注意力矩阵,然后根据概率分数采样不同的稀疏注意力索引矩阵,最后选择令牌嵌入作为稀疏注意力网络的输入[47]。
  7. 动态注意力:提出了一种名为动态注意力的方法,通过注意力修正和动态建模两个模块增强模型本身对各种对抗攻击的固有鲁棒性。这种方法不需要下游任务知识,也不增加额外成本,且能显著减轻对抗攻击的影响[48]。
  8. 基于注意力的Mixup:提出了一种新的Mixup方法AMPLIFY,利用Transformer自身的注意力机制减少原始样本中的噪声和异常值对预测结果的影响。这种方法在文本分类任务上表现优于其他Mixup方法,且计算资源成本较低[49]。

通过上述方法改进Transformer模型的注意力机制,可以有效提高其在自然语言处理任务上的性能。这些改进不仅提高了模型的效率和准确性,还增强了模型的可解释性和鲁棒性。

Transformer模型在计算机视觉领域的应用案例有哪些?

Transformer模型在计算机视觉领域的应用案例广泛且多样,涵盖了从基础的图像分类到复杂的对象检测、图像分割等多个方面。以下是基于我搜索到的资料,对Transformer模型在计算机视觉领域应用案例的详细分析:

  1. 图像分类:Transformer模型最初被应用于自然语言处理领域,但其强大的表示能力使其在计算机视觉任务中也表现出色。特别是在图像分类任务中,Vision Transformer (ViT) 通过将图像分割成多个小块(patches),然后将这些小块视为序列数据进行处理,已经显示出与卷积神经网络(CNN)相当甚至更优的性能[50]。例如,ViT在ImageNet数据集上的表现就证明了其有效性[51]。
  2. 对象检测:YOLOS系列模型是基于纯序列到序列的视角,通过最小化对二维空间结构的知识依赖,直接从图像中识别对象和区域级别的信息。YOLOS模型仅在ImageNet-1k数据集上预训练,就能在COCO对象检测基准上取得相当竞争的性能[54]。
  3. 图像分割:Transformer模型在图像分割任务中的应用也显示出了其潜力。尽管具体的案例在我搜索到的资料中没有直接提及,但从Transformer模型在处理图像全局上下文的能力来看,它们有潜力在图像分割等需要理解图像整体内容的任务中发挥作用[51]。
  4. 图像压缩、超分辨率、去噪和异常检测:Transformer模型也被用于各种图像编码任务,如图像压缩、超分辨率、去噪和异常检测等[56]。这些应用展示了Transformer模型不仅在理解图像内容方面表现出色,而且在改善图像质量方面也有潜力。
  5. 半监督学习:Transformer模型在半监督学习(SSL)领域的应用也是一个值得关注的点。通过结合无/自我监督预训练和监督微调,以及提出新的正则化机制,Semi-ViT模型在使用少量标签的情况下也能达到与CNN相当甚至更好的性能[57]。
  6. 自动生成架构搜索:通过使用神经架构搜索来自动化设计更有效的Transformer模型架构,这种方法不仅提高了模型的性能,还促进了对Vision Transformer的理解[58]。
  7. 图像生成:Transformer模型也被扩展应用于图像生成任务,如自回归图像生成和图像超分辨率。这些研究表明,Transformer模型能够有效地利用图像的二维特性,生成质量高于当前最先进的自回归图像生成模型的图像[59]。

Transformer模型在计算机视觉领域的应用案例丰富多样,从基础的图像分类到复杂的对象检测、图像分割等任务都有涉及。这些应用案例不仅展示了Transformer模型的强大性能,也为未来的研究提供了新的方向和灵感。

Transformer模型如何处理长距离依赖问题,与传统RNN和LSTM相比有何优势?

Transformer模型在处理长距离依赖问题上,相较于传统的RNN和LSTM模型,展现出了显著的优势。这些优势主要体现在以下几个方面:

  1. 自注意力机制:Transformer模型的核心是自注意力机制(Self-Attention),这使得模型能够在处理序列数据时,直接关注到任意两个位置之间的关系,而不需要像RNN或LSTM那样依赖于固定长度的上下文窗口[62]。这种机制极大地提高了模型捕捉长距离依赖的能力。
  2. 并行处理能力:与RNN和LSTM这类需要按顺序逐个处理序列元素的模型不同,Transformer能够同时处理序列中的所有元素。这意味着Transformer可以在更短的时间内完成相同的任务,尤其是在处理长序列时,这一点尤为重要[62]。
  3. 计算效率:尽管Transformer模型的理论时间复杂度为O(N^2),但通过各种改进和优化,如分块自注意力计算(Blockwise Parallel Transformer, BPT)[63]、长短期记忆注意力机制(Long-Short Transformer, Transformer-LS)[64]以及状态空间增强(State Space Augmented Transformer, SPADE)[65]等方法,可以有效降低实际运行时的计算成本,使得Transformer模型能够更高效地处理长序列数据。
  4. 适应性和灵活性:Transformer模型因其结构的灵活性和强大的表达能力,在多个领域都取得了突破性的成果,不仅限于自然语言处理(NLP),还包括计算机视觉、音频和语音处理、医疗健康以及物联网(IoT)等多个领域[62]。这种广泛的应用范围证明了Transformer模型在处理各种类型的数据时的高度适应性和灵活性。

然而,尽管Transformer模型在理论上具有上述优势,但在实际应用中,特别是在处理极长序列的任务上,仍然面临着一些挑战。例如,原始的Transformer模型由于其较高的时间复杂度,难以直接应用于长序列数据的处理[60]。此外,一些研究指出,Transformer模型在处理长距离依赖时可能存在关注不足和累积近似误差的问题[60]。为了解决这些问题,研究者提出了多种变体和改进策略,如引入局部性和平滑性的诱导偏差[61]、采用动态投影和双归一化策略来聚合长距离和短距离注意力[64],以及结合状态空间模型来增强全局信息的捕捉能力[65]。

Transformer模型通过其独特的自注意力机制和并行处理能力,在处理长距离依赖问题上相比传统RNN和LSTM模型展现出了显著的优势。尽管存在一些挑战和限制,但通过不断的改进和优化,Transformer及其变体在多个领域的应用前景仍然非常广阔。

对于Transformer模型的内部工作机制,目前存在哪些深入分析的研究成果?

对于Transformer模型的内部工作机制,目前存在的深入分析研究成果主要集中在以下几个方面:

  1. 预训练与微调:研究表明,通过在大型文本语料库上进行预训练然后在特定任务上进行微调,可以显著提高模型在多种自然语言处理任务上的性能[69]。特别是GPT-3的研究显示,通过扩大模型规模,可以极大地提升模型在少样本学习场景下的表现,有时甚至能与先前的最佳微调方法竞争[69]。
  2. 预训练方法的优化:通过对BERT预训练方法的复制研究,发现BERT模型被显著低估训练,通过调整关键超参数和训练数据大小,可以匹配或超过其发布后的所有模型的表现[70]。这强调了之前未被充分考虑的设计选择的重要性,并引发了对最近报告的改进来源的质疑。
  3. 迁移学习的探索:通过引入一个统一的框架,将每个语言问题转换为文本到文本格式,系统地研究了迁移学习技术对NLP的影响。这种方法结合了从探索中获得的见解、规模和新的“巨大清洁爬取语料库”,在多个基准测试中取得了最先进的结果[71]。
  4. 注意力机制的解释:通过对Transformer模型的注意力机制进行新的表述,将其视为应用核平滑器于输入的方法,提供了更好地理解Transformer注意力各个组成部分的方式[72]。此外,基于强化学习的方法被设计用来生成扰动样本,对模型的分类决策进行归因,从而在模型解释和对抗攻击任务中取得了比基线方法更好的成绩[73]。
  5. 神经机器翻译的可解释性:提出了一种解释性方法,跟踪输入令牌(源句子和目标前缀)的归因,以更好地理解当前NMT模型的内部工作机制[74]。
  6. 表示的自下而上的演化:通过使用典型相关分析和互信息估计器来研究信息如何在Transformer层之间流动,观察到不同学习目标的选择决定了这一过程[76]。
  7. 稳定性分析:通过对Transformer架构的敏感性分析,设计了一种新的架构Catformer,它通过连接而非残差连接或RNN基础的门控机制来减少训练难度,从而提高了训练的稳定性[77]。

这些研究成果展示了Transformer模型在自然语言处理领域的强大能力和潜力,同时也指出了未来研究的方向,包括进一步优化预训练方法、深入探索迁移学习的效果、提高模型的可解释性和稳定性等。

参考文献

1. Kaiming He, X. Zhang et al. “Deep Residual Learning for Image Recognition.” Computer Vision and Pattern Recognition(2015).

2. Ashish Vaswani, Noam M. Shazeer et al. “Attention is All you Need.” Neural Information Processing Systems(2017).

3. Jacob Devlin, Ming-Wei Chang et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” North American Chapter of the Association for Computational Linguistics(2019).

4. V. Lebedev. “Transformer basics.” Electrical Insulation Conference and Electrical Manufacturing Expo (2007). 356-359.

5. 李翔,张涛,张哲等.Transformer在计算机视觉领域的研究综述[J/OL].计算机工程与应用:1-15[2023-03-26].http://kns.cnki.net/kcms/detail/11.2127.TP.20221009.1217.003.html.

6. Fuzhao Xue, Jianghai Chen et al. “Deeper vs Wider: A Revisit of Transformer Configuration.” arXiv.org (2022).

7. M. Manning. “Fundamentals of Transformer Operation.” IEEE Electrical Insulation Magazine (1987). 18-20.

8. Zhenzhong Lan, Mingda Chen et al. “ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.” International Conference on Learning Representations(2019).

9. 杨有帅. 基于Transformer的图像特征提取方法研究[D].电子科技大学,2022.

10. Philip Quirke and Fazl Barez. “Understanding Addition in Transformers.” arXiv.org (2023).

11. Ye Lin, Mingxuan Wang et al. “Understanding Parameter Sharing in Transformers.” arXiv.org (2023).

12. M. Popel and Ondrej Bojar. “Training Tips for the Transformer Model.” Prague Bulletin of Mathematical Linguistics (2018). 43 - 70.

13. 成建鹏,毛承雄,范澍等.电子电力变压器原理和仿真研究[J].电力自动化设备,2004(12):23-25+35.

14. .T Divyapradeepa. “Modeling and Analysis of Transformer.” (2017). 469-480.

15. Zhe Chen. “Interpretation of the Transformer and Improvement of the Extractor.” arXiv.org (2023).

16. 肖雄,徐伟峰,王洪涛等.基于Transformer的细粒度图像中文描述[J].吉林大学学报(理学版),2022.

17. Andrea Ljubljanac. “Basic principles and operation of a transformer.” (2018).

18. Kechi Zhang, Ge Li et al. “What does Transformer learn about source code?.” arXiv.org (2022).

19. 冯智达,陈黎.面向混叠文字检测的单向投影Transformer算法[J/OL].计算机应用:1-7[2023-04-01].http://kns.cnki.net/kcms/detail/51.1307.tp.20220408.1554.010.html.

20. Borjan Geshkovski, Cyril Letrouit et al. “A mathematical perspective on Transformers.” arXiv.org (2023).

21. D. Morris. “Some tests of an exact practical theory of the transformer.” (1950). 17-23.

22. 段希.基于双向Transformer编码器及分段卷积的关系抽取研究[D].北京邮电大学,2020.

23. 谭棚文,向红朵.基于Transformer的图像分割研究[J].中国新技术新产品,2022,No.462(08):23-26.

24. W. H. I. B.Sc.. “XIX. Note on an important property of the auto-transformer.” (None). 241-245.

25. H. Hu. “A Simple Magnetizing Characteristic Model for the Transformer.” (2011). 96 - 98.

26. P. Lorrain. “The Poynting vector in a transformer.” (1984). 987-988.

27. 王梅,黄思萌,刘朗.基于可变形卷积的transformer检测算法[J].信息技术与信息化,2022,No.268(07):199-201+205.

28. H. Tobey. “Notes on Transformer Testing.” Transactions of the American Institute of Electrical Engineers (1907). 1179-1189.

29. P. Stakhiv, O. Hoholyuk et al. “Mathematical models and macromodels of electric power transformers.” (2011). 163-165.

30. Diederik P. Kingma, Jimmy Ba. “Adam: A Method for Stochastic Optimization.” International Conference on Learning Representations(2014).

31. Y. Hao, Li Dong et al. “Self-Attention Attribution: Interpreting Information Interactions Inside Transformer.” AAAI Conference on Artificial Intelligence (2020).

32. Samira Abnar and W. Zuidema. “Quantifying Attention Flow in Transformers.” Annual Meeting of the Association for Computational Linguistics (2020).

33. Yi Tay, Dara Bahri et al. “Synthesizer: Rethinking Self-Attention for Transformer Models.” International Conference on Machine Learning (2020).

34. Jianwei Yang, Chunyuan Li et al. “Focal Self-attention for Local-Global Interactions in Vision Transformers.” arXiv.org (2021).

35. Jianwei Yang, Chunyuan Li et al. “Focal Attention for Long-Range Interactions in Vision Transformers.” Neural Information Processing Systems (2021).

36. Shuangfei Zhai, Walter A. Talbott et al. “An Attention Free Transformer.” arXiv.org (2021).

37. Marcial Sanchis-Agudo, Yuning Wang et al. “Easy attention: A simple self-attention mechanism for Transformers.” arXiv.org (2023).

38. R. Y. Rohekar, Yaniv Gurwicz et al. “Causal Interpretation of Self-Attention in Pre-Trained Transformers.” arXiv.org (2023).

39. T. Nguyen, Richard Baraniuk et al. “Momentum Transformer: Closing the Performance Gap Between Self-attention and Its Linearization.” Mathematical and Scientific Machine Learning (2022).

40. Alexey Dosovitskiy, Lucas Beyer et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” International Conference on Learning Representations(2020).

41. Sainbayar Sukhbaatar, Edouard Grave et al. “Adaptive Attention Span in Transformers.” Annual Meeting of the Association for Computational Linguistics (2019).

42. Jesse Vig. “A Multiscale Visualization of Attention in the Transformer Model.” Annual Meeting of the Association for Computational Linguistics (2019).

43. Biao Zhang, Deyi Xiong et al. “Accelerating Neural Transformer via an Average Attention Network.” Annual Meeting of the Association for Computational Linguistics (2018).

44. Tam Nguyen, T. Nguyen et al. “Improving Transformers with Probabilistic Attention Keys.” International Conference on Machine Learning (2021).

45. Jae-young Jo and Sung-Hyon Myaeng. “Roles and Utilization of Attention Heads in Transformer-based Neural Language Models.” Annual Meeting of the Association for Computational Linguistics (2020).

46. Yu Lu, Jiali Zeng et al. “Attention Calibration for Transformer in Neural Machine Translation.” Annual Meeting of the Association for Computational Linguistics (2021).

47. Chuhan Wu, Fangzhao Wu et al. “Smart Bird: Learnable Sparse Attention for Efficient and Effective Transformer.” arXiv.org (2021).

48. Lujia Shen, Yuwen Pu et al. “Improving the Robustness of Transformer-based Large Language Models with Dynamic Attention.” arXiv.org (2023).

49. Leixin Yang, Yaping Zhang et al. “AMPLIFY: Attention-based Mixup for Performance Improvement and Label Smoothing in Transformer.” arXiv.org (2023).

50. Kai Han, Yunhe Wang et al. “A Survey on Vision Transformer.” IEEE Transactions on Pattern Analysis and Machine Intelligence (2020). 1-1.

51. Muzammal Naseer, Kanchana Ranasinghe et al. “Intriguing Properties of Vision Transformers.” Neural Information Processing Systems (2021).

52. Seung Hoon Lee, Seunghyun Lee et al. “Vision Transformer for Small-Size Datasets.” arXiv.org (2021).

53. K. Simonyan, Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” International Conference on Learning Representations(2014).

54. Yuxin Fang, Bencheng Liao et al. “You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection.” Neural Information Processing Systems (2021).

55. Yehao Li, Ting Yao et al. “Contextual Transformer Networks for Visual Recognition.” IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). 1-1.

56. Sonain Jamil, M. J. Piran et al. “A Comprehensive Survey of Transformers for Computer Vision.” arXiv.org (2022).

57. Zhaowei Cai, Avinash Ravichandran et al. “Semi-supervised Vision Transformers at Scale.” Neural Information Processing Systems (2022).

58. Minghao Chen, Kan Wu et al. “Searching the Search Space of Vision Transformer.” Neural Information Processing Systems (2021).

59. Niki Parmar, Ashish Vaswani et al. “Image Transformer.” International Conference on Machine Learning (2018).

60. Guanghui Qin, Yukun Feng et al. “The NLP Task Effectiveness of Long-Range Transformers.” Conference of the European Chapter of the Association for Computational Linguistics (2022).

61. Itamar Zimerman and Lior Wolf. “On the Long Range Abilities of Transformers.” arXiv.org (2023).

62. Saidul Islam, Hanae Elmekki et al. “A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks.” Expert systems with applications (2023).

63. Hao Liu and P. Abbeel. “Blockwise Parallel Transformer for Long Context Large Models.” arXiv.org (2023).

64. Chen Zhu, Wei Ping et al. “Long-Short Transformer: Efficient Transformers for Language and Vision.” Neural Information Processing Systems (2021).

65. Simiao Zuo, Xiaodong Liu et al. “Efficient Long Sequence Modeling via State Space Augmented Transformer.” arXiv.org (2022).

66. Jia Deng, Wei Dong et al. “ImageNet: A large-scale hierarchical image database.” 2009 IEEE Conference on Computer Vision and Pattern Recognition(2009).

67. Dzmitry Bahdanau, Kyunghyun Cho et al. “Neural Machine Translation by Jointly Learning to Align and Translate.” International Conference on Learning Representations(2014).

68. Ziyang Song, Qincheng Lu et al. “TimelyGPT: Recurrent Convolutional Transformer for Long Time-series Representation.” arXiv.org (2023).

69. Tom B. Brown, Benjamin Mann et al. “Language Models are Few-Shot Learners.” Neural Information Processing Systems(2020).

70. Yinhan Liu, Myle Ott et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach.” arXiv.org(2019).

71. Colin Raffel, Noam M. Shazeer et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.” Journal of machine learning research(2019).

72. Yao-Hung Hubert Tsai, Shaojie Bai et al. “Transformer Dissection: An Unified Understanding for Transformer’s Attention via the Lens of Kernel.” Conference on Empirical Methods in Natural Language Processing (2019).

73. 牛润良. 基于强化学习的Transformer模型解释与对抗攻击研究[D].吉林大学,2022.

74. Javier Ferrando, Gerard I. Gállego et al. “Towards Opening the Black Box of Neural Machine Translation: Source and Target Interpretations of the Transformer.” Conference on Empirical Methods in Natural Language Processing (2022).

75. Jimmy Ba, J. Kiros et al. “Layer Normalization.” arXiv.org(2016).

76. Elena Voita, Rico Sennrich et al. “The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives.” Conference on Empirical Methods in Natural Language Processing (2019).

77. Jared Davis, Albert Gu et al. “Catformer: Designing Stable Transformers via Sensitivity Analysis.” International Conference on Machine Learning (2021).

78. Alec Radford, Jeff Wu et al. “Language Models are Unsupervised Multitask Learners.” (2019).

  • 18
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Transformer是一种基于注意力机制的深度神经网络,用于自然语言处理中的序列到序列的学习。它使用了自注意力机制来解决传统的循环神经网络(RNN)存在的梯度消失和计算复杂度高的问题。 Transformer模型主要分为两个部分:Encoder(编码器)和Decoder(解码器)。Encoder将输入序列转换为一系列的隐藏表示,Decoder根据Encoder的输出和自身的输入,生成目标序列。其中,Encoder和Decoder都是由多个Transformer Blocks(Transformer块)组成的。 Transformer Blocks是Transformer中的基本单元,每个Block包含两个子层:多头自注意力层(Multi-Head Self-Attention Layer)和全连接前馈网络(Feed-Forward Neural Network)。在Multi-Head Self-Attention Layer中,每个单词都与序列中的其他单词进行注意力计算,得到每个单词的权重,然后根据权重对每个单词进行加权平均得到该单词的表示。在Feed-Forward Neural Network中,对Self-Attention层的输出进行全连接操作,得到新的表示。 Transformer中的另一个重要组成部分是位置编码(Positional Encoding),用于将输入序列中每个单词的位置信息编码到隐藏表示中。这样做是为了避免注意力机制忽略输入序列的顺序。 通过多层Transformer Blocks、位置编码和注意力机制,Transformer模型可以有效地处理自然语言处理任务,如机器翻译、文本生成和文本分类等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自太平洋的暖湿气流

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值