红帽的RHEL AI(Red Hat Enterprise Linux AI)是一个基于开源项目InstructLab和IBM Research提供的Granite大型语言模型的基础模型平台。它旨在无缝开发、测试和运行生成式AI模型,以支持企业应用程序[1][2][5]。
具体来说,RHEL AI提供了一个集成的环境,使得企业能够利用这些先进的AI技术来增强其业务流程和服务。这个平台不仅包括了必要的软件和工具,还提供了与Red Hat Enterprise Linux兼容的可启动镜像,这使得部署更加简便[3]。
此外,RHEL AI还支持跨混合基础设施的部署,这意味着企业可以在不同的计算环境中(如私有云、公共云和边缘计算)高效地部署和管理AI/ML工作负载[13][14]。这种灵活性对于需要处理大量数据和复杂计算任务的企业尤为重要。
红帽通过RHEL AI展示了其在推动AI技术商业化和实际应用方面的努力,特别是在开源社区中的贡献,以及如何将这些技术融入到现有的产品线中,如Red Hat Insights和Ansible Lightspeed,从而提高效率和智能化水平[6][7][10]。
红帽的RHEL AI能够帮助企业无缝地开发、测试和部署高性能的生成式AI模型,支持多种计算环境,并且与红帽的其他产品紧密集成,以实现更广泛的业务应用和自动化。
红帽RHEL AI如何与InstructLab和IBM Research的Granite大型语言模型集成?
红帽RHEL AI与InstructLab和IBM Research的Granite大型语言模型集成主要体现在以下几个方面:
- 技术共享与平台支持:根据证据,IBM已经将其Granite AI模型开源,并且在InstructLab平台上进行了部署[19][21]。这意味着红帽RHEL AI可以利用这些开源的Granite模型来增强其AI功能。此外,红帽也推出了企业级Linux AI平台(RHEL AI),该平台同样使用了开源的Granite模型和InstructLab技术[20]。
- 降低混合云中的障碍:红帽SVP和首席产品官Ashesh Badani表示,通过结合InstructLab和RHEL AI,可以帮助解决跨越混合云环境中的人工智能应用面临的许多障碍,如数据科学资源的限制等[20]。
- 多语言支持与参数范围:IBM的Granite AI模型支持多种编程语言,并且参数范围从3亿到34亿不等[22]。这种灵活性使得红帽RHEL AI能够适应不同的业务需求,无论是小规模还是大规模的项目。
- 代码生成能力:特别值得一提的是,IBM还开源了一个名为granite.20b.code的200亿参数的代码生成模型,这个模型可以帮助开发人员和IT运营人员使用自然语言提示来生成代码[23]。这种集成可能会极大地提高开发效率和自动化水平。
RHEL AI支持哪些具体的生成式AI模型开发工具和软件?
RHEL AI支持的具体生成式AI模型开发工具和软件包括Ansible-Lightspeed。Ansible-Lightspeed是RedHat提供的一项服务,它利用自动化生成式AI来帮助Ansible开发人员更快、更好地开发Playbook。
如何在私有云、公共云和边缘计算环境中部署RHEL AI?
在私有云、公共云和边缘计算环境中部署RHEL AI,可以通过以下步骤进行:
- 私有云部署:
- 在私有云环境中,首先需要确保您的基础设施支持RHEL操作系统。可以选择使用Red Hat Enterprise Linux作为基础镜像,并根据需要配置网络和存储。
- 可以利用Red Hat OpenShift AI来集成数据、智能和机器学习软件,以执行端到端的机器学习工作流[31]。
- 公共云部署:
- 在公共云平台如Amazon Web Services (AWS)或Google Cloud Platform (GCP)上,您可以创建和部署RHEL系统镜像。这包括安装所需的软件包和代理、配置隔离等[26]。
- Google Cloud Platform允许您将Red Hat Enterprise Linux镜像部署为Google Compute Engine实例,这涉及到选择合适的镜像选项并理解基础镜像的配置[25]。
- 边缘计算部署:
- 边缘计算环境通常涉及到在网络的边缘位置(如近用户的地方)部署计算资源,以减少延迟并提高响应速度。在这种环境中,可以使用Red Hat Enterprise Linux和OpenShift来优化应用程序的构建和管理[30]。
- Red Hat OpenShift AI支持在边缘计算环境中的部署,可以作为红帽托管环境的附加组件安装,如Red Hat OpenShift Dedicated和Red Hat OpenShift Service on Amazon Web Services[31]。
- 技术和工具:
- 使用OpenShift AI,您可以在多种环境中部署受培训的模型,使其可作为服务使用API访问。这对于测试和实施智能应用程序至关重要[32]。
- OpenShift AI已在OpenShift 4.15 + RHODS 2.7.0的环境中验证,表明它支持高级功能如LLM模型的部署[33]。
无论是在私有云、公共云还是边缘计算环境中,部署RHEL AI都需要考虑操作系统的选择、必要的软件和服务的配置,以及如何有效地利用OpenShift AI来集成和管理机器学习工作流。
RHEL AI如何提高企业应用程序的性能和服务水平?
RHEL AI通过多种方式提高企业应用程序的性能和服务水平。首先,RHEL 7.1企业版支持最新的硬件设备,使得系统能够充分利用最新的硬件技术来提升性能[35]。此外,RHEL AI与Run:ai合作,将Run:ai的资源分配能力引入到Red Hat OpenShift AI中,这有助于简化AI操作并优化基础设施,从而使企业能够更有效地利用AI资源[36]。
RHEL AI还通过OpenShift AI版本2.9引入了新的功能,如边缘模型服务技术预览、改进的模型开发等,这些都有助于提高模型的效率和性能[37]。此外,OpenShift作为构建AI和机器学习数据科学工作流程及AI驱动智能应用的基础,提供了敏捷性、灵活性、可移植性和跨混合云的可扩展性[38]。
RHEL还集成了生成式AI到OpenShift和RHEL中,并推出了Podman Desktop的专用扩展Podman AI Lab,使开发者能够构建、测试和运行基于生成式AI的应用程序[39]。此外,RHEL Enterprise Linux AI采用开源方法,使得大型语言模型(如Granite系列)可以被开发、测试和部署,以支持企业级应用[40][41]。
红帽通过RHEL AI推动AI技术商业化和实际应用的具体案例有哪些?
红帽通过RHEL AI推动AI技术商业化和实际应用的具体案例包括以下几个方面:
- 生成式AI技术的应用:红帽正在探索如何将生成式AI技术与商业应用场景相结合,未来计划利用这些技术生成运算符,以支持数智化转型过程中的AI落地[42]。
- AIGC技术融入产品线:红帽已经将AIGC技术融入其产品线,为企业级场景提供服务。这表明红帽在生产和关键任务领域的AI应用上取得了进展,并且强调了将功能安全引入传统Linux发行版(如RHEL)的重要性[43]。
- 开源AI模型的开发:IBM和红帽共同推出了Granite系列的大型语言模型(LLMs),这是他们首次尝试开源AI模型,这些模型在更广泛的RHEL AI平台中启动。红帽企业级Linux AI包括使用bootc Linux工具打包成可启动容器镜像的RHEL操作系统,使其能够跨基础设施便携运行[44]。
- OpenShift平台的AI集成:红帽的OpenShift平台提供了AI集成,增强了部署、管理的能力,并通过AI模型计划和实现可移植性的方式提高了效率。此外,红帽还布局了Sora,以进一步推动其技术的商业化[46]。
- 开源AI平台的建设:红帽与IBM合作搭建了一个开放的开源AI平台,该平台不仅可以运行IBM的大模型,还可以运行其他开源大模型,支持不同的应用场景。这显示了红帽在全球开源领域的领导地位,并展示了其将领先技术应用于数字化转型的决心[47]。
- NVIDIA Morpheus AI安全框架的部署:红帽发布了基于NVIDIA Morpheus AI数据科学框架的基础设施,可以在RHEL上部署Morpheus AI,同时使用Red Hat OpenShift管理基于Morpheus的容器和应用程序。这一举措进一步加强了红帽在AI安全框架部署方面的能力[48]。
参考资料
1. What is RHEL AI? A guide to the open source way for doing AI
2. 红帽发布Red Hat Enterprise Linux AI(RHEL AI)
3. Red Hat Enterprise Linux AI | RHEL AI | Red Hat Developer [2024-05-07]
5. 红帽发布 RHEL AI,用于无缝开发、测试、运行开源 Granite 生成式 AI 模型 - IT之家 [2024-05-08]
6. 红帽已经将AIGC技术融入产品线,为企业级场景提供服务_AI&大模型_桑红妍_InfoQ精选文章 [2023-06-02]
7. 红帽:基于开源模式 推动 Ai 技术的应用和落地 - 51cto [2023-05-31]
8. Red Hat Enterprise Linux 8系统管理实战最新章节
11. 探索下一步:红帽助力更多企业享受AI技术的红利_腾讯新闻 [2023-11-02]
12. 红帽开源AI 平台- 自由构建和部署AI 模型与应用
13. 通过红帽OpenShift 加速机器学习运维(MLOps)
15. 部署OpenShift AI 环境,运行AI/ML 应用
17. 红帽OpenShift AI | 面向混合云的开源AI/ML 平台
18. Red Hat 和NVIDIA 联合构建更安全的组合式AI 基础设施
19. IBM Open-Sources Granite AI Models, Launches InstructLab Platform [2024-05-07]
20. IBM Open-Sources Granite AI Models, Launches InstructLab Platform [2024-05-07]
21. IBM Makes Granite AI Models Open-Source Under New InstructLab Platform ... [2024-05-07]
22. IBM open-sources its Granite AI code generation model, trained in 116 ... [2024-05-08]
24. 使用基于自动化生成式AI 的Ansible-Lightspeed 服务高效 ...
25. 1.4. 为公有云部署获取 RHEL - Red Hat Customer Portal
26. 在 Amazon Web Services 上部署 RHEL 9 - Red Hat Customer Portal
27. 1.4. 为公有云部署获取 RHEL - Red Hat Customer Portal
28. 《深入理解边缘计算》第二章:云、边、端的部署与配置原创
30. 红帽优化RHEL和OpenShift以支持边缘计算原创
31. Red Hat OpenShift AI 简介 - Red Hat Customer Portal
32. 2.2. 使用部署的模型 - Red Hat Customer Portal
33. OpenShift AI - 部署并使用LLM 模型原创
34. Red Hat Enterprise Linux 8,产品详细展示,北京亿豪永信科技 ...
35. 红帽新RHEL 7.1企业版:引领企业IT未来的强大引擎
36. Red Hat and Run:ai Optimize AI Workloads for the Hybrid Cloud
37. Red Hat Summit 2024: The Biggest News In AI, Containers And More - CRN [2024-05-07]
38. Red Hat Accelerates AI/ML Workflows and Delivery of AI-Powered ...
39. Red Hat integrates generative AI in OpenShift, RHEL and a host of ... [2024-05-07]
40. Red Hat Enterprise Linux AI
41. InstructLab: Advancing generative AI through open source | Red Hat ... [2024-05-07]
43. 红帽已经将AIGC技术融入产品线,为企业级场景提供服务
44. IBM throws its Red Hat into open source AI ring with RHEL AI [2024-05-07]
45. 红帽如何赋能企业级开源新蓝海? - 知乎 - 知乎专栏