(2)
图(
1
)
图像缩放中的插值和重采样
(2)
双线性内插法
作为对最近邻点法的一种改进,
这种方法是
“利用周围
4
个邻点的灰度值在两个方向上作线
性内插以得到待采样点的灰度值”
。即根据待采样点与相邻点的距离确定相应的权值计算出
待采样点的灰度值。双线性内插的示意图如图
2
所示,其中
X
、
Y
坐标表示像素的位置,
f(*
,
*)
表示像素的灰度值。其数学表达式为:
f
(
i+u
,
j+v
)
=
(
1-u
)
(
1-v
)
f
(
i,j
)
+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1)
(
2
)
与最邻近法相比。双线性内插法由于考虑了待采样点周围四个直接邻点对待采样点的影响,
此基本克服了前者灰度不连续的缺点,
但其代价是计算量有所增大。
但由于此方法仅考虑四
个直接邻点灰度值的影响,
而未考虑到各邻点间灰度值变化率的影响,
因此具有低通滤波器
的性质,
使缩放后图像的高频分量受到损失,
图像的轮廓变得较模糊。
用此方法缩放后的图
像与原图像相比,仍然存在由于计算模型考虑不周而产生的图像质量退化与精度降低的问
题。