sql 中位数_在MySQL环境中如何求众数、均值和中位数

本文介绍了在SQL中如何计算众数、均值、中位数和四分位数,提供了解题方法和相关函数的使用示例,特别提到了在MySQL和Hive环境下的中位数计算技巧。
摘要由CSDN通过智能技术生成

有些SQL的笔面试题中会出现一些要求众数、均值、中位数、四分位数等,我这里将我会的几种解法分享给大家,大家也可以在评论中继续补充!

1edfe7955d90634e848ad78777dff2c5.png
样例表

(一)众数

如求员工工资的众数

1、使用having

SELECT salary,COUNT(*) AS cnt
FROM salaries
GROUP BY salary
HAVING count(*) >= ALL(SELECT COUNT(*) FROM salaries GROUP BY salary) 

额外补充ALL、IN和ANY的用法

  • IN:在范围内的值,只要有就true;
  • ALL:与子查询返回的所有值比较为true,则返回true;
  • ANY:与子查询返回的任何值比较为true,只有有一个成立,则返回true;

2、使用max

-- 写法一
CREATE VIEW max_a AS
SELECT salary,COUNT(*) AS cnt 
FROM salaries 
GROUP BY salary

SELECT sa
当涉及到从MySQL数据库导入数据并进行数据清洗时,首先确保你已经安装了pandas库以及MySQL数据库的Python连接器。《Python数据清洗:缺失值与异常值处理实战》一书将会为你提供深入的理论知识和实用的代码示例,帮助你高效地完成这一过程。 参考资源链接:[Python数据清洗:缺失值与异常值处理实战](https://wenku.csdn.net/doc/44ukx5i0uj?spm=1055.2569.3001.10343) 为了处理缺失值,你可以使用pandas的fillna()方法来填充或删除缺失数据。例如,如果缺失值是由于数据未被记录导致的,而你认为这些数据不应影响整体分析,可以选择删除含有缺失值的记录。如果选择填充缺失值,可以使用均值中位数众数等统计量。 异常值的处理则更为复杂,需要根据数据的分布和业务需选择合适的方法。Z-score和IQR是两种常用的技术,它们能够帮助识别并处理异常值。在应用这些技术时,你可能需要计算均值、标准差、分位数等统计量,然后根据计算结果决定异常值的处理策略。 以下是处理缺失值和异常值并导入数据到数据框的示例代码: ```python import pandas as pd import sqlalchemy # 连接到MySQL数据库 engine = sqlalchemy.create_engine('mysql+pymysql://username:password@localhost/dbname') conn = engine.connect() # 从数据库数据 sql = 'SELECT * FROM your_table' data = pd.read_sql(sql, conn) # 处理缺失值,例如用中位数填充价格列 data['price'] = data['price'].fillna(data['price'].median()) # 计算评论数的描述性统计量 Q1 = data['comment'].quantile(0.25) Q3 = data['comment'].quantile(0.75) IQR = Q3 - Q1 # 处理异常值 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR data = data[(data['comment'] >= lower_bound) & (data['comment'] <= upper_bound)] # 将清洗后的数据导入到新的数据框 cleaned_data = data # 关闭数据库连接 conn.close() # 此时,cleaned_data存储的就是已经处理过缺失值和异常值的数据框 ``` 在这个过程,我们首先建立了一个数据库连接,然后从MySQL数据到pandas数据框。接着,我们针对价格列处理了缺失值,使用了中位数填充。之后,我们计算了评论数的分位数和IQR,并据此确定了异常值的范围,最后将异常值从数据集剔除。 在你完成了这个过程后,为了进一步深入学习数据清洗的其他方面,比如数据转换、特征工程、数据可视化等,我强烈建议你查阅《Python数据清洗:缺失值与异常值处理实战》。这本书不仅介绍了如何处理数据的缺失值和异常值,还包括了更多高级的数据清洗技术和方法,以及丰富的案例研究,这些都是你在数据分析和处理领域不可或缺的技能。 参考资源链接:[Python数据清洗:缺失值与异常值处理实战](https://wenku.csdn.net/doc/44ukx5i0uj?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值