度量相似性数学建模_数学建模中的高维数据挖掘技术优化研究-Research on Optimization of high dimensional data mining in mathematica...

    High dimensional data mining due to the characteristics of the space occupied large overhead mining, high complexity, mining precision is not good, in order to improve the accuracy of performance on high dimensional data mining, this paper brings forward a mining method of mathematical modeling of phase space reconstruction and K-L transform features of high dimensional data based on compression. The ensemble learning technique to reconstruct the phase space of high dimensional data flow, considering the inter class data imbalance, the correlation dimension of the characteristic parameters of high dimensional data, according to the chain distance data sparsity fusion, maximum Lyapunove computation of high dimensional data stream model refers to the number of spectra, the spectral analysis method of data after clustering, clustering of data using K-L feature dimension compression method, reduce the memory and computation overhead of data mining. The simulation results show that the method has high accuracy, less memory consumption and less computation cost.

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值

    举报

    选择你想要举报的内容(必选)
    • 内容涉黄
    • 政治相关
    • 内容抄袭
    • 涉嫌广告
    • 内容侵权
    • 侮辱谩骂
    • 样式问题
    • 其他
    点击体验
    DeepSeekR1满血版
    程序员都在用的中文IT技术交流社区

    程序员都在用的中文IT技术交流社区

    专业的中文 IT 技术社区,与千万技术人共成长

    专业的中文 IT 技术社区,与千万技术人共成长

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    客服 返回顶部