High dimensional data mining due to the characteristics of the space occupied large overhead mining, high complexity, mining precision is not good, in order to improve the accuracy of performance on high dimensional data mining, this paper brings forward a mining method of mathematical modeling of phase space reconstruction and K-L transform features of high dimensional data based on compression. The ensemble learning technique to reconstruct the phase space of high dimensional data flow, considering the inter class data imbalance, the correlation dimension of the characteristic parameters of high dimensional data, according to the chain distance data sparsity fusion, maximum Lyapunove computation of high dimensional data stream model refers to the number of spectra, the spectral analysis method of data after clustering, clustering of data using K-L feature dimension compression method, reduce the memory and computation overhead of data mining. The simulation results show that the method has high accuracy, less memory consumption and less computation cost.
参与评论
您还未登录,请先
登录
后发表或查看评论
公安备案号11010502030143
- 京ICP备19004658号
- 京网文〔2020〕1039-165号
- 经营性网站备案信息
- 北京互联网违法和不良信息举报中心
- 家长监护
- 网络110报警服务
- 中国互联网举报中心
- Chrome商店下载
- 账号管理规范
- 版权与免责声明
- 版权申诉
- 出版物许可证
- 营业执照
- ©1999-2025北京创新乐知网络技术有限公司