Python dataframe绘制饼图_数据可视化之实践篇——python

本文介绍了Python中数据可视化的10个例子,包括散点图、折线图、直方图、条形图、箱线图、饼图、热力图、蜘蛛图/雷达图、二元变量分布以及成对关系图的绘制。重点讲解了Matplotlib和Seaborn库的使用,如matplotlib的plt.scatter()和plt.plot(),以及seaborn的sns.jointplot()和sns.heatmap()。此外,还列举了Seaborn的各类图形API,帮助读者深入理解数据可视化。
摘要由CSDN通过智能技术生成

一.10个可视化例子

import 

1.散点图

plt: plt.scatter(x, y, marker=None) 函数。x、y 是坐标,marker 代表了标记的符号。比如“x”、“>”或者“o”。选择不同的 marker,呈现出来的符号样式也会不同。

sns: sns.jointplot(x, y, data=None, kind=‘scatter’) 函数。其中 x、y 是 data 中的下标。data 就是我们要传入的数据,一般是 DataFrame 类型。kind 这类我们取 scatter,代表散点的意思。当然 kind 还可以取其他值,这个我在后面的视图中会讲到,不同的 kind 代表不同的视图绘制方式。

matplotlib绘制的视图为矩形,seaborn为方形,且还额外显示x,y的直方图分布

# 随机1000个点,模拟绘制

96e67cdb902beed3e3214ff28885ac59.png

dc36585dcdbddf2d0b229ed0a8872848.png

a4a2d63c6f66f84d40921cabf3dfccc8.png
#?plt.scatter

b76699c924245e1d354d6677f62a91bb.png

2.折线图

表示数据随时间变化趋势

在 Matplotlib 中,我们可以直接使用 plt.plot() 函数,当然需要提前把数据按照 x 轴的大小进行排序,要不画出来的折线图就无法按照 x 轴递增的顺序展示。

在 Seaborn 中,我们使用 sns.lineplot (x, y, data=None) 函数。其中 x、y 是 data 中的下标。data 就是我们要传入的数据,一般是 DataFrame 类型。

这里我们设置了 x、y 的数组。x 数组代表时间(年),y 数组我们随便设置几个取值

两个库绘制出来结果一致。

# data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值