面板数据分析方法步骤全解
面板数据的分析方法或许我们已经了解许多了,
但是到底有没有一个
基本的步骤
呢?那些步骤是必须的?这些都是我们在研究的过程中
需要考虑的,而且又是很
实在的问题。面板单位根检验如何进行?协
整检验呢?什么情况下要进行模型的
修正?面板模型回归形式的选
择?如何更有效的进行回归?诸如此类的问题我们
应该如何去分析
并一一解决?以下是我近期对面板数据研究后做出的一个简要总
结
,
和大家分享一下,也希望大家都进来讨论讨论。
步骤一:分析数据的平稳性(单位根检验)
按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈
曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,
而
这
些序列间本身不一定有直接的关联,此时,对这些数据进行回归
,
尽管有较高的
R
平方,但其结果是没有任何实际意义的。这种情况称
为称为虚假回归或伪回归
(
spurious regression
)。他认为平稳的真正
含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势
列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检
验。首先,
我们可以先对面板序列绘制时序图,
以粗略观测时序图中
由各个观测值描出代表
变量的折线是否含有趋势项和
(
或
)
截距项
,
从而为进一步的单位根检验的检验模式
做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中
丄
evin
以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时
有三种检验模式:既有趋势又有截距、只有截距、
以上都无
。
因此为了避免伪回归,确保估计结果的有效性
,
我们必须对各面板序