面板模型在python上的实现

背景

        有一份城镇GDP相关的数据,共有9个地区分别11年(2008~2018)的数据,无缺失数据。数据中包括X1(城乡居民年末储蓄存款), X2(年末常住人口), X3(城镇化率), X4(教育支出)共4个自变量,因变量为GDP。现希望研究4个自变量对于GDP的影响情况。以及数据值较大,为防止异方差问题因而进行过取对数处理。

理论

        面板模型可继续分为三种类型,分别是FE模型,POOL模型(就是普通的OLS回归)和RE模型。最终应该选择哪个模型,可通过各个检验进行判断。SPSSAU分别进行F检验,BP检验和Hausman检验(豪斯曼检验),以判断出最终应该使用哪个模型(现实研究中,可能还有其它的检验方法)。

         F检验用于判断FE和POOL模型,如果p 值小于0.05,则应该以FE模型为准。BP检验用于判断RE和POOL模型,如果p 值小于0.05,则应该以RE模型为准。Hausman检验用于判断FE和RE模型,如果p 值小于0.05,则应该以FE模型为准。结合三个检验,最终判断出哪个模型最优。一般对直接比较FE个RE就可以,不需要比较FE和POOL以及RE和POOL,因为FE、RE都会比POOL好。

  • 检验类型检验目的检验值检验结论
    F检验FE模型和POOL模型比较选择p 值<0.05FE模型
    BP检验RE模型和POOL模型比较选择p 值<0.05RE模型
    Hausman检验FE模型和RE模型比较选择p 值<0.05FE模型

 分析

        案例部分数据如下:

          固定效应模型(FE)和随机效应模型(RE)拟合变量系数及Hausman检验结果如下: 

             pval值等于0,说明FE比RE更优,因此选FE模型。

代码

第1步:关注微信公众号:ZX先生

第2步:输入关键词:面板模型

第3步:观看文章,代码下载链接在文章里

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值