python朴素贝叶斯分布对数据的要求_统计学习方法与Python实现(三)——朴素贝叶斯法...

统计学习方法与Python实现(三)——朴素贝叶斯法

1、定义

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。

对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布。然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y,从而进行决策分类。

朴素贝叶斯法学习到的是生成数据的机制,属于生成模型。

设Ω为试验E的样本空间,A为E的事件,B1~Bn为Ω的一个划分,则有全概率公式:

2、学习与分类

对于训练数据集:

我们的目的是从训练集中学习到联合概率分布P(X, Y),为此先学习后验概率分布和条件概率分布。

后验概率分布,即类标签Y的概率分布,条件概率分布即在类标签Y确定的情况下输入特征向量x的分布。

从中学习后验概率分布:

从中学习条件概率分布:

条件概率分布的参数是指数级数量的,对其进行参数估计是不可能的。因此,对条件概率分布做独立性假设,认为输入特征向量x的各个分量是独立的,这也是“朴素”的含义。这样做简化了模型,但是也牺牲了分类的准确率。

条件独立性假设:

朴素贝叶斯法进行分类时,对于输入特征向量x,通过学习到的模型计算后验概率

。主要是之前学习的后验概率

和条件概率

,带入全概率公式,可得输入x的条件下,输出y取各个值的概率,并且将概率最大的y作为分类结果。

朴素贝叶斯法分类的基本公式为:

朴素贝叶斯分类器为:

分母为定值,则进一步简化可得:

3、分类方法的含义

一般的分类方法都有损失函数的概念,优化的目标也是最小化损失函数。朴素贝叶斯法直接要求将实例分到后验概率最大的类中有何含义?实际上,这也等价于期望风险即损失函数最小化。

如果对模型f(X)取0-1损失函数L(Y,f(X)),即分类正确损失L取0,分类错误L取1。则期望风险函数为:

因为每个输入特征向量x是独立的,因此只需对每个X=x的实例进行极小化。

即推导得到了后验概率最大化准则。

4、参数学习

参数学习即确定每个先验概率和条件概率,一般用极大似然估计法。

先验概率P(Y = ck)的极大似然估计是:

  条件概率

(即Y取ck时X的第j个特征取第l个值的概率)的极大似然估计是:

其中,函数I(.)表示当括号内的条件满足取1,不满足取0。

朴素贝叶斯算法为:

a、对于给定的训练数据集,计算先验概率和条件概率。

,  

b、对于给定的实例x,计算

c、确定实例x的类

5、贝叶斯估计

极大似然估计可能会使所要估计的概率为0的情况,这时会导致计算条件概率时分母为0,使分类出现偏差。可以用贝叶斯估计来解决此问题,即在随机变量各个取值的聘书上加一个正数λ。λ取0时为极大似然估计,λ取1时为拉普拉斯平滑。贝叶斯估计下的条件概率为:

贝叶斯估计下的先验概率为:

6、Python实现

数据集选择mnist手写数字集,数据集中为0~255的整数,先读入数据并对其进行0-1二值化。并初始化数组记录条件概率和先验概率。

from tensorflow.keras.datasets importmnistimportnumpy as np

(train_data, train_label), (test_data, test_label)=\

mnist.load_data(r'E:\code\statistical_learning_method\Data_set\mnist.npz')#训练集和测试集大小

train_length = 60000test_length= 10000size= 28 * 28 #输入特征向量长度

data_kind = 10 #分为几类

choice = 2 #每个向量有几种取值

lam = 1 #贝叶斯估计中的lamda

#预处理数据

train_data =train_data[:train_length].reshape(train_length, size)#数据二值化

np.place(train_data, train_data > 0, 1)

train_label= np.array(train_label, dtype='int8')

train_label=train_label[:train_length].reshape(train_length, )

test_data=test_data[:test_length].reshape(test_length, size)

np.place(test_data, test_data> 0, 1) #数据二值化

test_label = np.array(test_label, dtype='int8')

test_label=test_label[:test_length].reshape(test_length, )#初始化数组记录条件概率和先验概率

P_con =np.zeros([data_kind, size, choice])

P_pre= np.zeros(data_kind)

然后在训练集上进行学习,计算先验概率和条件概率。

#计算先验概率

def compute_P_pre(label, P_init, lamda=1):

pre=P_initfor la inlabel:

pre[int(la)]+= 1pre+=lamdareturn pre / (label.shape[0] + pre.shape[0] *lamda)#计算条件概率

def compute_P_con(data, label, P_init, lamda=1):

con=P_init

summ=np.zeros(P_init.shape[0])for index, value inenumerate(data):for jndex, dalue inenumerate(value):

con[int(label[index]), jndex, int(dalue)]+= 1summ[int(label[index])]+= 1con+=lamda

summ+= lamda * 2

for index, value inenumerate(con):

con[index]/=summ[index]return con

最后,在测试集上进行测试。

#进行测试

defBayes_divide(pre, con, test, label):

acc=0

ans= np.full(test.shape[0], -1)

P_div=np.ones([test.shape[0], pre.shape[0]])for index, value inenumerate(test):for times inrange(pre.shape[0]):for jndex, dalue inenumerate(value):

P_div[index, times]*=con[times, jndex, int(dalue)]

P_div[index, times]*=pre[times]for index, temp inenumerate(P_div):

ans[index]=temp.argmax()if ans[index] ==label[index]:

acc+= 1

return acc /label.shape[0], ans

P_pre= compute_P_pre(train_label, P_pre, lamda=lam)

P_con= compute_P_con(train_data, train_label, P_con, lamda=lam)

acc, ans=Bayes_divide(P_pre, P_con, test_data, test_label)print('acc', acc)

lam=1时的测试结果为acc=0.8413。

更改lam的值,lam=0时,acc=0.8410;lam=2时,acc=0.8411;lam=5时,acc=0.8407;lam=10时,acc=0.8399。总的而言影响不大。

7、生成模型

因为朴素贝叶斯方法是生成模型,所以可以通过训练好的模型生成出模型学习到的特征,也就是生成模型认为最像某个数字的图像。最简单的思想就是,因为我们假设输入特征向量x的各个维度的值是独立的,所以可以输入一个初始向量,然后比较每个维度上取0或1时,模型输出的概率大小,然后将各个维度的值置为更大的概率所对应的值。代码实现如下:

from skimage importioimportmatplotlib.pyplot as plt#测试输入数据被识别为goal的概率

deftest(data0, goal, pre, con):

P_gene= 1

for index, value inenumerate(data0):

P_gene*=con[goal, index, int(value)]

P_gene*=pre[goal]returnP_gene#初始化输入为全0向量

gene =np.zeros([data_kind, size])for goals, sim inenumerate(gene):

temp=sim#遍历向量

for index inrange(sim.shape[0]):

ans1=test(temp, goals, P_pre, P_con)

temp[index]= 1ans2=test(temp, goals, P_pre, P_con)if ans1 >ans2:

temp[index]=0#画出生成的图像

for i in range(gene[:10].shape[0]):

draw=gene[i][:, np.newaxis]

draw= draw.reshape([28, 28])

plt.subplot(1, 10, i+1)

plt.axis('off')

io.imshow(draw)

plt.tight_layout()

最后的输出结果为:

参考:李航 《统计学习方法(第二版)》

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素贝叶斯是一种基于概率统计的分类算,它的核心思想是利用贝叶斯定理计算出每个类别的后验概率,然后选择具有最大后验概率的类别作为分类结果。在这个过程中,朴素贝叶斯假设每个特征之间相互独立,也就是说,每个特征对于分类的贡献是独立的。 在Python中,我们可以使用scikit-learn库来实现朴素贝叶斯。具体步骤如下: 1.准备数据:将数据集划分为训练集和测试集。 2.训练模型:使用训练集来训练朴素贝叶斯模型。 3.测试模型:使用测试集来测试模型的准确率。 下面是一个简单的朴素贝叶斯分类器的实现示例: ``` from sklearn.naive_bayes import GaussianNB from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载数据集 iris = load_iris() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=0) # 创建朴素贝叶斯分类器对象 gnb = GaussianNB() # 训练模型 gnb.fit(X_train, y_train) # 预测测试集的结果 y_pred = gnb.predict(X_test) # 计算准确率 accuracy = sum(y_pred == y_test) / len(y_test) print("准确率:", accuracy) ``` 这里使用了iris数据集作为示例数据集进行分类。首先,我们使用`train_test_split`函数将数据集划分为训练集和测试集,然后创建一个`GaussianNB`对象,训练模型并使用测试集来测试模型的准确率。最后,我们计算出准确率并将其打印出来。 完整的代码可以在以下链接中找到: https://github.com/Light-City/NaiveBayesClassifier-Python/blob/master/NaiveBayesClassifier.py

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值